
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie tome 40 (54), 1986, pp. 181{185

SPECTRAL TYPE OF SOME TRANSFORMATIONS

OF CERTAIN STOCHASTIC PROCESSES

S. Mitrovi�c

Abstract. We introduce a stochastic process with multiplicity equal to one which satis�es
certain conditions and consider spectral type of the derivative process and of the non-anticipative
integral transformations for the given process.

0. The technique used in the paper is the same as in [1] or [3].

Let the process x(t) be given by Cramer representation:

(1) x(t) =

Z t

a

g(t; u)dz(u);

u � t, t 2 T = (a; b) where z(u) is a process of orthogonal increments such that
Ez(u) = 0 and Ez2(u) = F (u) and g(t; u) is a nonrandom function for u � t from
L2(dF ) space. We suppose that the second order process x(t) is continuous to the
left and purely nondeterministic.

Let us introduce the following conditions for g(t; u) and z(u):

(R1) The functions g(t; u) and g0

t(t; u) are continuous and bounded for u � t,
u; t 2 T .

(R2) g(t; t) = 0 for all t 2 T .

(R3) The function F (u) = Ez2(u) is absolutely continuous and not identically
constant and f(u) = F 0(u) has at most a �nite number of discontinuity points
in any �nite subinterval of T .

In [4] we proved the following theorem: the process x(t), t 2 T given by (1)
and satisfying (R1), (R2), (R3) has multiplicity N = 1. Further more we suppose
that x(t) satis�es conditions above.

1. As it is well known a form of correlation function for x(t) is:

r(s; t) =

Z min(s;t)

a

g(s; u) � g(t; u)f(u)du;
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and r(s; t) is continuous everywhere in the interval T � T . By the condition R1,
r(s; t) has partial derivatives r0

s and r0

t which are continuous everywhere except
perhaps on the diagonal s = t. But we have:

lim
s!t

s�t

r(s; t) � r(t; t)

s� t
=

Z t

a

g(t; u)g0

t(t; u)f(u)du;

lim
s!t

s�t

r(s; t) � r(t; t)

s� t
=

Z t

a

g(t; u)g0

t(t; u)f(u)du+ g2(t; t) � f(t):

By the condition R2 this two limiting values will be equal. Hence r0

s and r0

t are
continuous at every point. Similarly the partial derivative r00

s;t is a continuous
function for s, t and its form is:

r00

s;t =

Z min(s;t)

a

g0

s(s; u)g
0

t(t; u)f(u)du;

s; t 2 T . The expression above is the correlation function of the derivative preocess:

(2) x0(t) =

Z t

a

g0

t(t; u)dz(u); u � t; u; t 2 T:

Theorem 1. The derivative process x0(t) given by (2) is continous and has

the same spectral type as the process x(t).

Proof. Continuity of x0(t) follows from the fact that its correlation func-
tion is continuous. By the theorem from [2] and from the form of r(s; t), for
x0(t) it is suÆcient to show that g0

t(t; u), u � t, u; t 2 T is complete in L2(dF ).
If
R s

a
g0

s(s; u) (u)f(u)du = 0 for all s 2 (a; t], where  (u) is any function from

L2(dF ) space, and t is any point from T , then for all s 2 (a; t] the following

holds:
�R s

a
g(s; u) (u)f(u)du

�
0

s
= 0. That means

R s

a
g(s; u) (u)f(u)du = 0 for all

s 2 (a; t]. Since g(t; u) is complete in L2(dF ), u; t 2 T then  (u) = 0 almost
ewerywhere related to the measure dF and that is what we hand to show. The
spectral measure for x0(t) is dF , multiplicity equal to one and the expression (2) is
Cramer representation of x0(t).

Example 1. Let x(t) =
R t

a
(P (t) � P (u)) � dz(u), u � t, u; t 2 (a; b) be a

process with absolutely continuous F (u), where P (t) is a polynomial of any degree
n � 1. If g(t; u) = P (t) � P (u), u � t, u; t 2 (a; b) is complete in L2(dF (u)), then
the process x0(t) exists, has multiplicity one and its spectral measure is dF .

Example 2. The same fact holds for the process x(t) =
R t

a
Q(t � u) � dz(u),

u � t, u; t 2 T , where F (u) is absolutely continuous, Q(t) is a polynomial of degree
n � 1, and Q(0) = 0.

2. Let us introduce now y(t), t 2 T as a nonanticipative integral transfor-
mation of x(t) given by (1):

(3) y(t) =

Z t

a

'(t; u)x(u)du;
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u � t, u; t 2 T . The function '(t; u) is such that for each t 2 T the quadratic mean
integral from (3) exists. It is easy to see that:

y(t) =

Z t

a

'(t; u)

�Z u

a

g(u; �)dz(�)

�
du

=

Z t

a

�Z t

�

'(t; u)g(u; �)du

�
dz(�); t 2 T:

Let us denote
R t

�
'(t; u)g(u; �)du by G(t; �) where a < � � u � t < b.

Lemma. The functions G(t; �) and G0

t(t; �) are continuous if '(t; u), '
0

t(t; u),
g(t; u) are continuous on t and u, u � t, u; t 2 T .

Proof. The continuity of the function G(t; �)on t for all � follows from:

jG(t2; �)�G(t1; �)j �

Z t1

�

j'(t2; u)� '(t1; u)j � jg(u; �)jdu

+

Z t2

t1

j'(t2; u)j � jg(u; �)jdu;

when �1 ! �2 and �1 � �2. In a similar way we can show that by conditions of
lemma the function G0

t(t; �) is continuous for t and �. Here is:

G0

t(t; �) =

Z t

�

'0

t(t; u)g(u; �)du+ '(t; t)g(t; �); � � u � t; �; t 2 T:

Theorem 2. The nonanticipative integral transformation y(t) de�ned by (3)
has the same spectral type as x(t) from (1) if the functions '(t; u) and '0

t(t; u) are
continuous and bounded for u; t 2 T , u � t.

Proof. From the continuity and the limitation of '(t; u) and '0

t(t; u) on t

and u, and from the fact that x(t) satis�es the condition R1 it follows by lemma
that R1 holds for G(t; u), u � t, u; t 2 T . The condition: G(t; t) = 0 for all t 2 T is
valid too. Finally since all of the three conditions R1, R2, R3 hold for the process
y(t) then y(t) has multiplicity equal to one. The spectral measure dF is the same
as for x(t). That implies the same spectral type. (See theorem 5.2 in [1], and the
remark in [4]).

Example 3. The process y(t) =
R t

a
x(u)du, u; t 2 T has the same spectral type

as x(t). Here is '(t; u) � 1 for u � t, G(t; �) =
R t

�
g(u; �)du and G0

t(t; �) = g(t; �)
where a < � � u � t < b.

Example 4. The process x(t) = z(t), t 2 [0; � ] = T with the absolutely
continuous function F (u), u 2 T has multiplicity N = 1. The process y(t) from (3)
has the same spectral type as x(t) if '(t; u) and '0

t(t; u) are continuous on t and

u, t; u 2 T . They are bounded because T is compact. Here G(t; �) =
R t

�
'(t; u)du,

and G0

t(t; �) =
R t

�
'0

t(t; u)du+ '(t; t), where 0 � � � u � t � � .
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Remark. If we want to prove that the process y(t) has multiplicity equal
to one when multiplicity of x(t) is unknown, then we may ommit the assumptions
that g0

t(t; u) is continuous and bounded for u; t 2 T and g(t; t) = 0 for all t 2 T .
Namely the next theorem is valid.

Theorem 3. Let the process x(t) be given by expression (1), let g(t; u) be

a continuous and bounded function on t and u, u; t 2 T and let the condition R3

be satis�ed. Then the process y(t) given by (3) has multiplicity equal to one if the

functions '(t; u) and '0

t(t; u) are continuous and bounded for u; t 2 T .

Proof. Since the conditions R1, R2, R3 hold for y(t), t 2 T then the statement
is valid [1, 5.2].

Example 5. The process which has multiplicity equal to two, while its nonan-
ticipative integral transformation has multiplicity equal to one: Let x(t) be repre-
sented by x(t) = w1(t)+h(t) �w2(t), where w1 and w2 are two independent Wiener
processes for t � 0. A function h(t) is absolutely continuous with h0(t) > 0, so that
h0(t) does not belong to L2((l;m)) for any open interval (l;m) � [0;1) but does
belong to L1([0; t)) for any t > 0. By [5] multiplicity of this process is two and the
spectral type is dt � dt. Let us de�ne the nonanticipative integral transformation
of x(t) as above in which '(t; u) � 1, u � t, u; t 2 [0;1). That means:

y(t) =

Z t

0

x(u)du =

Z t

0

(w1(u) + h(u) � w2(u))du

=

Z t

0

w1(u)du+

Z t

0

h(u)w2(u)du

=

Z t

0

Z u

0

dw1(�)du+

Z t

0

h(u)

Z u

0

dw2(�)du

=

Z t

0

�Z t

�

du

�
dw1(�) +

Z t

0

�Z t

�

h(u)du

�
dw2(�)

where 0 � � � u � t <1. The functions

G(t; �) = (G1(t; �); G2(t; �)) =

�
t� �;

Z t

�

h(u)du

�
and G0

t(t; �) = (1; h(t))

are continuous and bounded for t, �, 0 � � � t < 1. It is easy to see thatR t

0
G2(t; �)d� < 1 holds for t 2 [0;1) and the nonanticipative transformation

exists in the quadratic mean. Hence by the last theorem, multiplicity of y(t) is one
and its spectral measure is dt.
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