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DIFFERENT KINDS OF THE COVARIANT DIFFERENTATIONS
IN RECURRENT FINSLER SPACES

Irena Comié

Abstract. A Finsler spaceis defined to be recurrent if the metric tensor is recurrent. In
such a space two ortogonal families of vector fields are defined. Using a family of connection
coefficients depending on a parameter, we examine conditions which should be satisfied so that
the projections of the metric tensor in the direction of mentioned vector fields are recurrent.

1. Introduction. In this paper the Finsler spaces in which the metric tensor
is recurrent i.e. satisfies (2.14)—(2.17) will be examined. In this space m vectorfields
B (z, &) and n —m vectorfields N (z, &) which are linearly indipendent and satisfy
(2.1) are given. The vector dz® and &* are decomposed in the direction of these
vectors as it is given by (2.6) and (2.7). We shall suppose that

Fo(zt, ... 2™ et 2t u™ o™ et ™ o™ L e™) = 0,
a=1,2,...,n

any of the solutions of systhem of differential equations (2.6), together with (2.7)

define z and % as the functions of u, %, v, ¥ in the form

a _ ol m , m+1 n 1 -m ~m+1 X0
2 =z, .., u™ e e, 0T
o ol m , m+1 n 1 -m ~m+1 X0
2 =z%u .. u™ e a0

a:]‘727 )

In this paper we shall not obtain the above equations but the partial deriva-
tives of tensors with respect to u, v, %, © will be substituted by derivatives with
respect to z and & (see (4.8)). We shall suppose that the tensor and vector fields
in F), are homogeneous of degree zero in . For a vector field £%(z, &) we have

(1.1) ¥ (z, &) = By (z, )€ (z, &) + N (,4)E" (z, &)
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where £ = B2¢a, ¢k = Nk¢e are also homogeneous functions of degree zero in z.
As
& (w,#) = € (u,v,0,8) (=0 or z=Fk)
and
A\i® = B (z, &)\ + N (2, #) A\o*
it follows that
é-:t (u7 U) A/l.l/, A,[)) = é-:t (u7 U) 1}/7 1.})
and
(1.2) S 70" + 8% 0% =0
where ) )
0o = 0/00%, O = 6/00F.
Formulae (1.2) are valid always when instead of £ there are coordinates of any
tensor field homogeneous of degree zero in .

We shall define different kinds of connection coefficients and covariant dif-
ferentiations which are generalisations of the induced differential on a subspace of
F,.

For some special cases of (2.6) its solution is a family of subspaces of Fj,.
Some of these are mentioned here.

If we fix the vector # in the equation dz® = B%(x,#)du® + N2 (z,2)dv* we
obtain

dz® = B%(x,@0)du® + N (x, d0)dv*, a=1,2,... n.
For dvf = 0 these equations reduce to dz®B%(x)du®. These are the differetial
equations of the family of subspaces

= fo>ut, .. u™, Crgt, ..., Ch) a=1,2,...,n
S(at 22, 2")
det I = det T
¢ St u™, Crty e Cn)
and Cypq1,...,C, are arbitrary constants. From detI # 0 it follows that (1.3)

may be written in the form
u® =u(xt,2?,... 2", a=1,2,...,m
Cr = Cr(zh, 22,... ,z"), k=m+1,...,m
Using these equations we obtain from (1.1)
8ax® = Suf*(ut,. .. ,u™ Cry1,...,Cn) = BE(u', ... ,u™, Crs1,-..,Ch)
1
]

= B2t (z", ... ,z"),...,Cplz", ... ,2™)] = B%(z",... ,z")
(00 = 6/6u®).
For all m dimensional subspaces z® = f®(u!,... ,u™,Cpy1,...,C,) B are the

tangent vectors and N are the normal vectors, according to (2.1). For the same
fixed & (& = o) putting du® = 0 we obtain another family of subspaces

1
¢ :g"‘(Cl,... ,Cmv"” g ,’Un)
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for which N are the tangent vectors and By are the normal vectors. For every
fixed & we obtain a similar ortogonal family of subspaces but the induced metric
on each subspace is Riemannian. We have

9an(1,v) = gap(, 30) B (¥, £0) By (w, o)
If we put v* = Cj, k =m +1,... ,n we obtain

Gab = gab(u; Om+1; v 7én)>

a Riemannian metric on the subspace z¢ = z%(u!,... ,u™,Cps1,...,Crn). The

more interesting case is when B? = B2(z) on the whole F,, (rank[B%] = m).
The equations dz® = BZ(z)du® (dv* = 0) define a family of subspaces F,,
% = 2%ul,... ,u™,Cpy1,...,Cy) for which BY(x) are the tangent vectors and
N@(x,&) are the normal vectors because gop(x,%)BS(z)N2(x,4) = 0. The in-
duced metric is defined as usual by gu(u, @, v,0) = gag(m,:&)Bg(x)Bf(x) and it is
a Finsler metric when © = 0 (i.e. £ = BY(z)u®) and v*F =Cy k=m+1,... ,n
on the subspace

L _
z* =z%u, ..., u™, Cmg1y -, Cn).

The situation is similar when N = N¥(z), k =m +1,... ,n and B = B¢(z, &),
only then N are the components of tangent vectors of the subspaces and B are
the normal vectors.

The induced differentials D&?, DE* are defined by

D¢ = BLDE™,  D¢* = NiDe™.
For the special case when ¢¥ = 0 and £%(u, v, 1, v) = £*(u, 1), where all v¥ are fixed
and ¥ = 0 for k =m + 1,... ,n we have the classical case where #* = B2u® and
¢ = Boge.

In 4 are given conditions when the tensors g,, and g, will be recurrent with
respect to different kinds of covariant differentiation.

2. The induced connection coefficients in a recurrent Finsler space.
In the Finsler space F,, the metric function is F'(z, &). Let us define m vector fields
Bg (z, &) and n-m vector fields N2 (z, )

a)6)776)6)X7---:1,2,... , N
aabac,d,e,f,-..zl,Q,... ,m
k)l>m)n7p)Q7---:m+1,... ,n

in such a way that these vector fields be linearly independent at each (z,z) and
satisfy the relations

(21) gaﬁ(xai)Bg(mai)NI?(mai) =0
foreacha=1,2,... ,m,k=m+1,... ,n. Let us define
(2.2) a) gab = gasBLB]  b) gi = gasNEN/

(2.3) a) B} =9"gasBS b) NF =gk g,sNE
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where go3, BS and Nf are zero degree of homogenity in @, (¢*°) and (g*™)

inverse metrices of (gq) and (grm) respectively. From (2.2) and (2.3) we have

are

a) NSNI?‘ = gklgaﬁNlﬁNI'j‘ = gklglp = 6’;

(24) a o ac B npa ac a
b)  BaBy =9"gapB. By = g"°ger = 0 -

As usual

(2.5) 83 = BB + N Nj.

If ¢¥(z, ) is a vectorfield in F),, homogeneous of degree zero in &, then
£ = Bye® + Ny,

We may write

(2.6) dz® = B2du® + N dv*

(2.7) &% = B&u® + Nfo*.

Let us define the absolute differential which corresponds to the motion from (z, %)
to (& + dx, & + d) by D.
The induced differentials are defined by

(2.8) a) DE* = B°D¢™  b) D¢ = Nkpe¢o

and

(2.9) D¢* = BODE® + N2 Dk,

We shall use the notation

(2.10) 1 = F '3 = FY(B%u" + N2o*) = B2 1" + Nji*
where

(2.11) 1*=Flge, k= FTok

From (2.9) we have

(2.12) DI* = B®DI* + N2 DIk

where

DI* =dI* + Fag,da:"’ + Aong"’.
We shall suppose that the metric tensor is determined by
(2.13) Jap (T, @) = 270,05 F* (2, 1)
and that the space Fj, is recurrent, i.e.

(2.14) Japly = Ay(2, %) gap-
(2.15) 9asly = 1y (2, %) gap-
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As
(2.16) Dgop = gaglydz” + gap| DI
from (2.14) and (2.15) we obtain

(2.17) Dgop = K(x,%,dz, Dl)gas-
where
(2.18) K(z,&,dz,Dl) = X\, (z,2)dz” + py(x,&)DI7.

The absolute differential of g.gs is

(219)  Dgap = dgag — (T2 955 + T gas)da” — (AL g5 + Af, 9as) DI

The connection coefficients are determined in [2] under conditions I', 5 = I,
*

and Aagy = Agay, but in [3] under conditions Iy 5. =T 5., Aagy = Aypa-

In this paper we shall use two last conditions.

The vector dz” and DI” (y = 1,2,...,n) are not linearly indipendent. As
is known that in the non-recurrent Finsler space from gagl"lﬁ =1 it follows that

,DI* = 0. In a recurrent Finsler space from g,3l%l° = 1 we obtain using (2.14)—
(2.16)

(2.20) Agdz® + (ug + 215)DIP = 0.

In [3] the induced connection coefficients are determined, but (2.20) was not
taken into account. Here this will be done and we obtain a family of connection
coefficients depending on some parametres. As in [3] we shall write

(2.21) DB = wi(d)B} + @7 (d)N,

(2.22) DN = wi(d)BS + wi(d)N&

where

(2.23) wi(d) =T gdu’ + T jdv* + A% DI + A" DI¥
x=d or x =m, y=a or y==k.

From (2.1) and (2.17) we have

D(9apB; Ny) = 605 (DBI)N} + g0 Bi DN}, = 0.
Substituting (2.21) and (2.22) into the above equation and using (2.2) we obtain
(2.24) Dok = —Wha € Gem Dy = —GapiDh,

the same equation as in a non-recurrent Finsler space. If we express DBS by the
connection coefficients of the space F;, and use (2.6) and (2.12) we get

(2.25) DBg = (Bg gdu’ + Bg|3DI") B} + (BSzdv* + Bg|3DI*) N,
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where

a) Byy =03By —6,BeT +T.4B] () =T &%)

(2.26) )
b) B2z = FosBX (85 — Al’s) + AsHBL  (Agl = A 51%)

If we substitute (2.6) and (2.12) into (2.20) using the notations

(2.27) /\b:BbﬁAﬁ) /\k:NkB/\ﬁv NC:Bfﬂﬁv Nk:Nkﬁp’ﬁv
we obtain
(2.28) 0= 0% (z, ) [Npdu® + Apdv® + (up + 21,) DI® + (uy, + 21) DI¥]

where 6% is any parameter homogeneous of degree zero in . If we equate the right
hand side of (2.21) with the sum of the right-hand sides of (2.25) and (2.28) we get
an equation where on the both sides terms with factors du®, dv*, DI* and DI* are
present. Equating the corresponding coefficients we obtain

du’ : DB + T PN = BYsBy) +05\
dvf : T4BS + T RNG = B2 gN, + 02N,
DI':  AfB§+AJTNS = BelsBy + 05 (s + 21)
DI* ASGBE + AN = Be|sNy + 05 (ke + 21k)

Multiplying the above equations first by go,BJ then by g.,N, and using the
notation .. = 05 gayBY, Oan = 05 gay N, we obtain

(a) Thp= gDz’YBZBbBB:\B + OacAe
(b)  The= g,ngN,fBgm + OacAk
(©)  Auch = garBY By BS|5 + Ouc (o + 21p)
(2.29) @ A = Gar BYNE BE| 5+ Oac (i, + 20x)
(e) Lons = gangBfBg|ﬁ + Oans
(6)  Tonk = 9oy NANY B 5 + fan i
(
(

g) Aanb = ga'er’ZBfBﬂﬁ + 9an(ub + 2lb)
) Aank :ga'er’ZNEBﬂg-Fean(,uk +21k)

In a similar manner using the expression for DIN;* and the notations

(67 (63
Vke = Vg, ga*y337 Vkn = Vg, gDz’YN;{a
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where vy (z, &) is any parameter homogeneous of degree zero in & we obtain

a)  Tip= gmBngN,?‘ﬁ + VkeAs

b Tha= gangNleﬁg + Vke A

) Ak = garBIB) N5 + vie (16 + 21p)
d) Apa = gaA,B;’NlﬁN,ﬂB + Vke (pu + 21;)
e) Chny = gm,NngN,?]ﬁ + Vkn o

f) Lt = gaerZNlﬁNlﬁﬁ + Vin Al

Apnb = gay N B N5 + Vin (1 + 213)

(
(
(
(
(2.30) (
(
(
( At = Gary NYNINE 5 + vin (pu + 201)

167

The connection coefficients obtained in [3] are the special case of those ob-

tained here, when we take 85 = 0 and vif = 0.

The parametres 8 and vy cannot be chosen arbitrarily because of (2.24),

from which we obtain

gk (T hdu® +Tndv' + AR DI* + AW DI

= —gaa(Tpdu’ + T\ ddv' + 4,4 DI° + 4,4 D1Y).

From the above relation it follows

f‘:;" :_f‘ta 7; :_7*11
(231) kb kab kl kal

B

akb = —Akap Agpt = —Agal-

Substituting the connection coefficients from (2.29) and (2.30) into (2.31) and

using the relation
gMBg'lﬁN,z + gmB;‘N,Z‘B =0

and the similar one with | 5 We obtain

(232) t‘)ak = —Vgq-

3. Different kinds of covariant differentiation. From (2.7) and (2.12)

we have

(3.1) DI® = B®DI® + N2 DI* = (DB2®)I* + (DN2)I™ + BYdI® + N&dI*.

In we substitute from (2.21) and (2.22) the expression for DBY and DN using

the notations of [4]

3.2) f‘gz = f‘;”;la + f‘;fylm z=dor z=m

Afy = A1+ AT I y=bor y==k
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we obtain
(3.4) DI = di? + Ty3du® + 3, %dv* + A4 DI* + A% DI*
(3.5) DI™ = dI™ + TyRdu® + 3, 7rdo* + A2 DI + A7 DIk,

From (2.11) we have
dit = F~'dud + 0ddF="',  d™ = F~'do™ + o™dF .
If we substitute the above equations into (3.4) and (3.5) we get
(3.6) du? = —FT }du® — FT 4dv* + F(6f — AS%)DI® — FALDIF + alF~'dF
(3.7) di™ = —FT Pdu® — FT ' dv* — FAS?DIY + F (8 — A7) DIF + o™ F~dF.
For any vectorfield £*(z, ) in F,, we have from (2.9)
(3.8)  DE* = BXDE + NEDeb = (DBX)E® + (DNR)EF + BXde® + N der.
Substituting di? and do™ from (3.6) and (3.7) into
(3.9) de® = 646%du + 8468 du? + 6, E0dv™ + 0, E0dD™
(3.10) de® = 648 dut + 6485 du? + 6, dv™ + SR d™
and so obtained d¢?® and d¢* into (3.8) we obtain
DE™ =B2(¢% du’ + %, dv™ + £°|, DI° + €%, DI™)
(3.11) + NS (€2 du® + €4, dv™ + €7, DI + ¢, DI™)
+ BEF 7 AF (846%0% + 6m€%0™) + NOF 7 dF (846™0% + 6, €70™)

where
(a) &F. =06.6" — Foag"Tol — For& Lol + T,76" + Tyie”
512) (b) & = 0mt” Fédgff;i - Pjékgw_f;’z +_f;§i;£b +_fzm§k
(c) &c =Foag™(62 — Agh) — Fore™ A + A,56" + A7

(d) fx_|m = —Fog¢" Ay, + Fore™ (0%, — Ak + A,%,8 + A, &F
T =aorz=n.
Using the homogenity conditions for £* and ¢¥ we have (see (1.2))
6a€%u + 6,850 =0 (x=a or z=k),

so the last two terms in (3.11) are equal to zero and we obtain

(3.13) DE® = BADE® + NODE™,
where
(3.14) DE® = €% du® + €%, dv™ + €%, DI + €%, DI™

(3.15) DE™ = €2 du® + €%, dv™ + €7, DI + €7, DI™.
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For the metric tensor go3 the above formulae have the form:

Dgag =B(gapredu + gaprrdv® + gabﬁ Di° + gam DI*
(316) + thﬁg(gntTcduc + gntdevk + gnt|c DI + gnt|k le)
+ 0ap(Aedu® + Apdo® + (e + 20) DI + (ui + 1) DIY),

where éag = éag(a:, %) is a tensor homogenesous of degree zero in & and

. —x . — —ast — %
JabTe = 629ab — F0agapTod — FomgapTo™ — ganl g & — goal o2
(x=cor z=k),
. — % . — —ast —
IntTe = 5acgnt - F(sdgntrog - F(Smgntro;n - gmtrnzm - gnmrt;n
(x=cor z=k),
Gavle = Foagap(62 — Af.) = FOmgap AT, — gar AL, — gaa A,
gl = —Fdagas Ay, + Fomgan(OF" — Ay) — gan ALy — gaa A,
gnt|c = F(Sdgnt((sg - Agc) - F(SmgntAgz- - gmtA;rz - gnmgga
gnt|k = _Fédgntggk + F(Smgnt((slrgn - Ag}g) - gmtA:Lnk — Gnm 7;7;;-

(3.17)

The above relations are valid only on condition that
(3.18) beGapti® + Ok gapt® =0

which is satisfied because gup(u,v,,v), gnt(u,v,%,0) are homogeneous of degree
zero in 4 and 0.

In [3] DI* and DI* are defined by
(3.19) a) DI* = dl* + Ty2du + Tyidv®, b)) DIF = di* + ToFdu® + TyFdv'.

These formulae are different from (3.4) and (3.5) of present paper, but they
may be obtained as a special case of (3.4) and (3.5) if we put
62 =0, v¥=0, A4DI®+ AL DI* =0 AmDI®+ A" DI* =0.

Only under these conditions (3.19) and (2.12) are consistent. The conditions
Az, DI® + AZ, DI* = 0 z = d, or = m are equivalent (according to (3.12) and
(3.16) of [3]) to BEDI?(B2|4l* + Ng|4l*) = 0 and N DIP(Bg|gl* + N2|5l™) = 0.

Both conditions are satiafied when
(3.20) DI°(Bg|l" + Ng|l*) = 0.

If we define DI* and DI™ as we have done here by (3.4) and (3.5) then we do not

have the restricted condition (3.20). gab|c , gab|k , gnt|c , gnt|k given by (3.17) have
more terms containing Af, then the corresponding formulae (4.15) of [3].
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If F,, satisfies ga5|7 = 0i.e. py, =0 then Af; = 0 and the condition (3.20)
reduces to DIP[(J3B2)I% + 63N2)I*] = 0. Using (2.6) and (2.7) we obtain

(321) Dgaﬁ = ngaﬁ\éduc + Nggamad’l}k + ngamablc + Nggamale.
Comparing (3.21) with (3.16) we get

(322) nga[ﬂé = B;%gach + Ng[tignt‘fc + éaﬁAc

(3.23) N{gags = B gavti + Nibgutti + Oaphi

(324) ngaﬁ|6 = ngﬁgab|c + Ngfagnt|c + éaﬁ(p‘c + 2lc)

(3.25) Ngasls = B%gas|r + N2bgrale + Oap (i + 211.).

Multiplying (3.22) by B¢ and (3.23) by N’ and adding these relations we get
(3.26) gaply = Bg%crygach + BZ%N$gaka + N2EBSgntte + N;lf;'ignﬂk + A 0ap.
By the same process from (3.24) and (3.25) we obtain

__ nabc T ab atk, |, nt pe |
gaﬁ|'y - Baﬁfygab|c + Baﬁnygab|k + NaﬁB'ygnt|C

(3.27) o R
+ NogygntTk + Oap(py +21,).

THEOREM 3.1. The necessary and sufficient conditions for gagly = Ay gas

are
ac:/\c a_éa nc:Ac n_én
(3.28) (a) Gap| (Gab Ab) (©) gnt| (Gnt At)
() Gabjk = Ar(gab — Oan) (d) Gnejk = Mr(gnt — Ont)
where

(3.29) Ay =B\ + NFN, Bap = 04B% + 0, N5, baiphasBE N} = 0.

Proof. Substituting (3.28) and (3.29) into (3.26) we get

Gy =Bah(BiAe + NYAK) (gab — Oas)
+ NIS(BEX + NEXG) (gt — Ont) + MBag = \ygagp-
On the other hand if g, 5/, = Ay gag then from N¥BY = 0, BSBS, = 62, NA NI = 67
and (3.26) we obtain
9ap Bfed = 0300039u7e + Mbge = gpera = Malgse — Ose)
gaﬁle?BgNg = 5?52559abm + )\néfe = gretn = Anl(gre — éfe)
9aply NENS B = 6761059m7e + Aafr = grira = Malgr — Oit)
gaﬁhNngN% = 5g5f5fngnﬂk + Amépl = gpiTm = Am(gp1 — épl)-
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THEOREM 3.2. The necessary and sufficient conditions for gag|7 = ~rGap

are

(3 30) (a) Gab |c = MecGab — (,Uc + 2lc)éab7 Int |c = MeGnt — (,Uc + 2lc)ént
(b) gablk = megas — (1 + 20k, Itk = tkgne — (e + 20) Ot

where

(3.31) oy = Bipio + Ny

The proof follows from (3.27) using the similar method as in the previous
Theorem.

4. Connection between the partial differentiation with respect to
different variables. In formulae (3.12) we can not calculate 6.¢%, 0,,&%, 64€",
51€" because we do not have the explicit expression z® = z®(u,v,4,0) and &% =
*(u,v,%,0). This difficulty may be overcome in such a way that the mentioned
expressions are substituted by anothers in which the partial derivatives with respect
to x and & are present. Starting from (2.8) and (2.28) we may write

(4.1) D¢* = BADE® + (0p€" + v &™) BAD
(4.2) D& = NpDE™ + (076" + v ¢™)NLD
where

D = A\du® + A\pdv® + (pe + 21.)DI° + (g + 21;) DI* = 0.
On the other hand
(4.3) DE™ = 556%da’ + §;¢%di + T 4¢P da® + AF5€° DI,

Substituting
di' = F(65 — AJsDI® — T'da’® + F~1dFi

in (4.3) and using the notations

(4.4) € = 056" — §€°T!
(4.5) &5 = Foi™ (65 — Ay)
(z = b or x = m) we obtain

(16) D™ =(&"Byls + €™ N5 + Bpéls + N &3) (Bldu® + N dv")
' + (E"Bpls + E™NG| 5 + Bpely + N &) (B2DI° + N DIY).

Substituting (4.6) into (4.1) and (4.2), using the notations of (2.29) and (2.3)
after a comparation with (3.14) and (3.15) we get

a) &, =BG+ T,re + 0

b) &, =NiE5+ T2 + T, 5em
) €. =Bleh+ A+ AT e

Q) &l o= NiEs + ARE + Ap, e

C

(
(
4.7
(4.7) (
(
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(x=a or x =m).

Comparling (3.12) with (4.7) we get

(a)  0e&" — Foa€"To! — FO,E"T ok = BIEY

(18) (b)  owt” Fédajf;?n - Eékfffafn = Np.&5
(c)  Fou"(6! — Af,) — For&™ Af. = Bl
(d) — Fog€" AL, + Fopem(ok, — Ak ) = N3¢

(x =a or z =m).

The same formulae hold when in (4.8) £* is substituted by gas or gnt. For gap
(4.8a) takes the form
6cgab - Fsdgabf:)g - Fsmgabfggn = ngab,é

(4.9) . .
= BY[05(9asBSBy) — 6.(ga3 BS B )T

where we have used (4.4) in which &% is substituted by ggp.
If we substitute (4.9), T, and T, defined by (2.29a) into

*

bac
GabTe = 6cgab - F(;dgabfgg - F(;mgabf(*)zn
- gdbf;(ci - gadf;g
we get
(4.10) gavTe = BYBE B gagly — Ae(Bab + 0a) = Ae(Gab — Oab)

where we put 0. = 0up +0pa. It is evident that (4.10) and (3.28a) are the same for-
mulae, but from (4.10) follows that gopTe = Acgap When we choose such a connection
coefficients f‘;bc in which 6., = 0.

Similarly, using (3.12¢), (4.5) and (2.29¢) we obtain

Gavle = Fougap (0 — AL) = Fégap AT
- gdb/IZc - gadﬁﬁc
= BYF5,(9ap By By ) (35 — Abs) — 9ap By BIB5
— 95aBS BYBy)5 — (e + 21c) (Bab + 01a)
= ganle = B2 (asls — (tte + 20e) Bab + 0a)

= McYGab — (/1'0 + 2lc)0ab

(4.11)

(4.11) is the same as (3.30a). from (4.11) follows that gabI = [tcGqp When we
choose such connection coefficients Ag;. in which 6,5 = 0.

We have
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B THEOREM 4.1. If in the recurrent Finsler space the connection coefficients
' and A defined by (2.29) and (2.30) in which O, = 0 and vy, = 0 are used

(Unk + Vin = Oni) then
GabTc = AcGab,
IntTe = AeGnt,
galI: = KcGab,
gmm: = HcZnts

JabTk = AkGabs
IntTk = AkGnt,

Jablk = HkGab,
Intlk = Kk Gnt.

The part of proof are (4.10) and (4.11). The other formulae can be obtained

in the similar way.
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