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A STUDY OF FULL COLLINEATION GROUP

OF THE PROJECTIVE PLANE OF ORDER 26

V. Cigi�c

Abstract. It is proved that the full collineation group of a projective plane of order 26 is
a f13; 5; 13; 23g-group.

1. Introduction. According to the Bruck-Ryser's theorem, the existence
of a projective plane of order 26 is possible. This hypothetical projective plane
we denote with P, and with G = operatornameAutP we denote its full group of
collineations.

We say that G is a �-group (� being a set of prime numbers) if � contains the
set �(G) of all prime divisors of jGj. By Cauchy's theorem, if the prime number
p divides jGj, then G contains an element of order p. Therefore, the main task
in building up the group G is to determine all possible collineations of prime or-
der which operate on P, and to �nd the set �(G). In fact { by eliminating the
possibility of collineations of P of many prime orders { we shall get a set � of
prime numbers such that �(G) � �. By doing so we know that any collineation
of the �nite projective plane (see for example the classi�cation in [3]) is either:
(A) a quasiperspectivity (elation, homology, Baer's collineation), or (B) a general-
ized perspectivity, better to say semi-perspectivity (semi-elation, semi-homology),
or (C) a planar collineation, or (D) a collineation which operates without �xed
points. Let us mention that the type of a collineation � is determined by F(�),
here F(�) denotes the �xed structurre of the collineation, i.e. the set of all elements
(points and lines) of P which are �xed by �.

We shall prove the following

Theorem. The full collineation group of the projective plane of the order 26
is a f3; 5; 13; 23g-group.

2. Some results. Almost all results below are contained in Hughes-Piper
[1].
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The investigation of the existence of a �nite projective plane or a subplane is
always based on the following theorems:

Theorem 2.1. (Bruck-Ryser). For n � 1 or 2 (mod 4) there does not exist
a projective plane of order n unless n is a sum of two integral squares.

Theorem 2.2. (Bruck). Let P be a projective plane of order n with a proper
subplane P0 of order m. Then n = m2 (Baer's subplane) or n � m2 +m.

For any collineation operating on a �nite projective plane one has

Theorem 2.3. (Baer) Every collineation of a �nite projective plane has the
same number of �xed points and �xed lines.

Remark. 2.4. If � is a permutation group of the set S, then, for any x 2 S,
we denote by �x the set of all elements of � which �x x. This �x is called the
stabiliser of x and it is easy to see that it is a subgroup of �. A special sort of
permutation group is one in which �x is always the identity; such a group is called
semi-regular. (If a semi-regular group is also transitive, it is called regular). If the
order of the collineation � is prime, then h�i operates semi-regularly on P n F(�).
Moreover, h�i operates semi-regularly on every �-invariant subset of P n F(�). In
this case the number of points of P(�) (more precisely, the number of points of
each �-invariant subset of P n F(�)), is divisible by p.

When considering the possibility of existence of an odd prime order collineati-
on which operates with an even number of �xed points (lines) on a �nite projective
plane, the following theorem often leads to a contradiction (i.e. elimination).

Theorem 2.5. (Hughes). Let P be a �nite projective plane of order n, with
a collineation a of prime order p > 2. Furthermore let the number of �xed points
(lines) of � be even. Then the equation x2 = ny2 + (1)(p�1)=2pz2 has a nontrivial
solution in Z3.

Theorem 2.6. Every involution of a projective plane is a quasi-perspectivity.

Theorem 2.7. (Hughes). Let P be a projective plane of order n � 2
(mod 4), and suppose P has a collineation of even order. Then n = 2.

3. Discussions about Hamyng's length and about "Spielprodukt".

Supposse that the collineation � of prime order p � 3 operates on the projective
plane P of order n. All non�xed points from P are distributed on h�i-orbits of
length p. These orbits have the from fI0; I1; . . . ; Ip�1g (I = 1; 2; . . . ; jP nF(�)j=p.
where jP nF(�)j denotes the number of points of P nF(�). The point is determined
by its orbital number I and by the index which denotes the ordinal number in the
orbit. Let l be a line of P which does not contain any �xed point of �. By omitting
the indices (but considering them as unknowns from Zp = f0; 1; . . . ; p � 1g), the
line l has (so called orbital) representation

(�) l = f1; 1; . . . ; 1
| {z }

s1

; 2; 2; . . . ; 2
| {z }

s2

; . . . ; m;m; . . . ;m
| {z }

sm

g:
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It is allowed here that some multiplicities si be zero, but in each case s1+s2+. . .+
sm = n+1. The number H(l) = s1(s1� 1)+ s2(s2� 1)+ � � �+ sm(sm� 1) is called
Hamyng's length of l. With the assumption and notation given above, one has

Lemma 3.1. Let � be a collineation of prime order p (p � 3) of the projective
plane P of order n and let a line l from P contain no �xed points of �. Then
H(l) = p� 1.

Proof. Suppose that in the representation (�) the points witn orbital number
1 have indices x1; x2; . . . ; xs1 . Of course, these are di�erent elements of Zp; let

x1 < x2 < � � � < xs1 . The line l intersects the line l�
i

in exactly one point for all

i = 1; 2; . . . ; p�1. On the other hand, the line l will intersect the line l�
i

in a point
with orbital number 1 for each

i 2 fx1 � x2; x1 � x3; . . . ; x1 � xs1 ; x2 � x1; x2 � x3; . . . ; x2 � xs1 ; . . . ; xs1 � x1;

xs1 � x2; . . . ; xs1 � xS1�1g;

where all these written di�erences are di�erent mod p and none of them is zero
mod p. According to this, there are exactly s1(s1 � 1) such intersections. In the

same way l intersects exactly s2(s2 � 1) lines l�
i

in the points with orbital number
2, and so on. As the whole h�i-orbit of the line l has exactly p lines, we have exactly

p� 1 intersections of the line l with l�
i

(i = 1; 2; . . . ; p� 1), whence

p� 1 = s1(s1 � 1) + s2(s2 � 1) + . . . + sm(sm � 1); i.e. H(l) = p� 1: �

Let us suppose that the lines l1, and l2 do not contain any �xed point of �
and that l1 and l2 belong to di�erent h�i-orbits. Let

l1 = f1; 1; . . . ; 1
| {z }

s1

; 2; 2; . . . ; 2
| {z }

s2

; . . . ; m;m; . . . ;m
| {z }

sm

g;

l2 = f1; 1; . . . ; 1
| {z }

t1

; 2; 2; . . . ; 2
| {z }

t2

; . . . ; m;m; . . . ;m
| {z }

tm

g;

s1 + s2 + � � �+ sm = n+ 1; t1 + t2 + � � �+ tm = n+ 1; H(l1) = H(l2) = p� 1:

The number Spiel (l1; i2) = s1t1 + s2t2 + � � � + smtm is called the \Spielprodukt"
of the lines l1 and l2.

Lemma 3.2. Spiel (l1; l2) = p.

Proof. Of course, jl1 \ l�
i

2 j = 1 for all i = 0; 1; . . . ; p � 1. On the other

hand, among the lines l�
i

2 (i = 0; 1; . . . ; p � 1) there are exactly s1t1 lines, which

intersect l1 in a point with orbital number 1 and so on . . . , among the lines l�
i

2

(i = 0; 1; . . . ; p � 1) there are exactly sm tm lines which intersect l1 in a point
with orbital number m. Obvioussly, the sum total of these intersections must be p.
Therefore, Spiel (l1; l2) = p. �

4. Proof of the Theorem. We shall now examine all possibilities of the
type �, � being a collineation of prime order p acting on a projective plane P of
order 26.
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(A) � is an quasi-perspectivity

(A1) � is an elation. The number of �xed points of � is N = 27 and by 2.4.,
p j 26, thus p = 2 or p = 13. Here p = 2 and p = 13 both divide 262+26+1�27 =
703� 27 = 676. According to 2.7., no involution (n = 26 � 2 (mod 4)) operates
on P , so there only remains the possibility of the elation � of order 13.

(A2) � is a homology. p j 27 � 2 = 52, and so p = 5. Furthermore N = 28
and 5 j 703� 28 = 675. Here is N � 0 (mod 2)), p = 5 > 2. The corresponding
diophantine equation from 2.5. is x2 = 26y2 + 5z2. By (2, Theorem 10.4.4.]
we concude that this equation has no nontrivial solutions in the integers x, y, z.
According to 2.5., there is no possibility for the homology � - a contradiction!

(B) � is a semiperspectivity.

(B1) is a semielation. According to 2.6., � cannot be an involution. In view
of 2.4., there only remains the possibility of a semielation a of prime order 13 which
�xes N = 1 points (lines) of the plane P . In fact, � �xes an incidental pair (ag)
point-line.

(B2) � is a semihomology. There is a special possibility when the semiho-
mology � of order 3 �xes a non-incidental pair point-line (thus N = 1). There
remain other possibilities N 2 f3; 8; 13; 18; 23g whith p = 5. According to 2.5. the
possibilities N = 8 and N = 18 are excluded, and it remains N 2 f3; 13; 23g with
p = 5.

(C) a is planar.

According to 2.2., only subplanes of order 2, 3 and 4 are possible in a plane
of order 26.

(C1) The collineation � of prime order p �xes seven points (lines) of the
subplane P0 = F(�) of order 2. From p j 27�3 = 22 �3 and p j 703�7 we conclude
p = 2 or p = 3. By 2.6., it follows that p = 3.

(C2) The collineation � �xes 13 points (lines) of the subplane P0 = F(�) of
the order 3. In the same way as above we conclude p = 23.

Remark. The collineation � in this case �xes points 1i (i = 0; 1; . . . ; 12) of
the desarguesian subplane P0 = F(�) of order 3. The �xed lines of � observed in
P are

li = f1i; 1i+1; 14+i; 16+i; I0; I1; . . . ; I22g

(i; I = 0; 1; . . . ; 12; all indices being taken mod 13):

Thirteen h�i-orbits fI0; I1; . . . ; I22g (of length 23) of the points are distributed
respectively on thirteen �xed lines li (i = 0; 1; . . . ; 12) of �. There remain 703 �
13� 23 � 13 = 391 points in P and they are distributed in 17 orbits fI0; I1; . . . ; I22g
(I = 13; 14; . . . ; 29). Dually, we have 13 � 23 = 299 lines, each containing exactly
one point 1i (wich are distributed in 13 h�i-orbits of length 33) and 17 � 23 = 391
lines which do not contain any �xed point 1i (distributed in 17 h�i-orbits of
length 23). Let r (i = 13; 14; . . . ; 29) be lines belonging to the latter clas. The
basic problem now is to give the orbital representation for ri. Each ri intersects
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li (i = 0; 1; . . . ; 12) in exactly one point. For this reason, in the representation of
each ri each of the orbital numbers 0; 1; . . . ; 12 occurs exactly once. The remaining
points (there are 14 of them) of each line ri are represented by orbital numbers
from f13; 14; . . . ; 29g. Let us mention that, according to 3.1. and 3.2., there must
be H(ri) = 22 (i = 13; 14; . . . ; 29) and Spiel (ri; rj) = p = 23 for all i 6= j. For the
representation of any of these lines, there exist, up to a renumeration, exactly four
possibilities. So for the representation of r13 we have:

(Type a)

r12 = f0; 1; . . . ; 12; 13; 13; 13; 13; 14; 14; 15; 15; 16; 16; 17; 17; 18; 18g

or (Type b)

r13 = f0; 1; . . . ; 12; 13; 13; 13; 13; 14; 14; 14; 15; 15; 16; 16; 17; 18; 19g

or (Type c)

r13 = f0; 1; . . . ; 12; 13; 13; 13; 14; 14; 14; 15; 15; 15; 16; 16; 17; 17; 18g

or (Type d)

r13 = f0; 1; . . . ; 12; 13; 13; 13; 13; 13; 14; 14; 15; 16; 17; 18; 19; 20; 21g

Starting with r13 (one of the types given above) allows various possibilities for cotin-
uation with r14; r15; . . . { with regard to Hamyng's length and the \Spielprodukt".
No matter how we start (the order will be arranged according to some choice of
types) we come to the impossibility of the representiton at the fourth, �fth, or sixth
step. So it is impossible to present r16 or r17 or r18. In spite of a great number
of tries we made, which always led to contradiction, this, of course, cannot be a
proof. The problem is really at the very edge of \manual possibilities". But this
leads us to a conjecture: No planar collineation of order 23 can act on the plane of
order 26.

(C2) The collineation � �xes 21 points (lines) of the subplane P0 = F(�) of
order 4. We conclude, according to 2.4. and 2.6. that p = 11. Let us denote by 1i

(i = 0; 1; . . . ; 20) the �xed points of �. (These are the points of the desarguesian
subplane P0 = F(�) of order 4.) Each �xed line li (i = 0; 1; . . . ; 20) regarded
as a line of the plane P , contains exactly 2 h�i-orbits (of lenghth 11). These are
respectively:

fI0; I1; . . . ; I10g and fI 00; I
0

0; . . . ; I
0

10g (I; I 0 = 0; 1; . . . ; 20):

So, we have

li = f1i;1i+1;16+i;18+i;118+i; I0; I1; . . . ; I10; I
0

0; I
0

1; . . . ; I
0

10g

(the indices being taken modulo 21). There are exactly (703� 21)=11 = 62 mon-
trival h�i-orbits in the plane P . Of them, 42 are distributed on the �xed lines li
(two on each). There remain exactly 20 h�i-orbits of points of P and let them be
fI0; I1; . . . ; I10 (I = 21; 22; . . . ; 40). So we have �nally marked all points (703 of
them) of P . In the plane P there are exactly 21 �11 �2 = 462 lines containing exactly
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one �xed point of �. These lines are distributed in exactly 462=11 = 42 h�i-orbits
(two orbits for each 1i). There remain exactly 703� 21� 462 = 220 lines which
do not contain any �xed point of �. These lines should be distributed in exactly
20 h�i-orbits of length 11. The lines - representatives from these orbits - shall be
denoted ri (i = 1; 2; . . . ; 20). Is the orbital representation for r1, posible?

The line r1 intersects each li (i = 0; 1; . . . ; 20) in exactly one (non-�xed)
point, and in its representation participate the orbital numbers 0; 1; . . . ; 20 (each
only once), and it is not essential whether these numbers are apostrophized or not.
The Hamyng's number of each of these orbital numbers is 1(1 � 1) = 0. For the
remaining six points of the line r1 (21 + 6 = 27) one has to use several orbital
numbers from f21; 22; . . . ; 40g with such multiplicities that - according to 3.1. {
Hamyng's length of r1 be H(r1) = p � 1 = 11� 1 = 10. But this is not possible.
Therefore, there is no possibility for a planar collineation with the �xed subplane
of the order 4 (in a plane of order 26).

(D) � operates without �xed points (i.e. F(�) = ;). In this case p j 703 = 19�
37, thus p = 19 or p = 37. The corresponding equations from 2.5. are respectively:

x2 = 26y2 � 19z2: x2 = 26y2 + 37z2:

Again by [2, Theorem 10.4.4.] we conclude that these equations have no nontrivial
solutions in the integers x, y, z - a contradiction.

This �nishes the proof that �(G) � f3; 5; 13; 23g, that is, the full group of
collineations of a projective plane of order 26 is a f3; 5; 13; 23g-group. �

Corollary. Each collineation (of prime order p) which operates on a projective
plane of order 26 is of one of the following types:

1. an elation of order 13,

2. a semi-elaton of order 13 which �xes an incidental pair point-line,

3. a semi-homology of order 5 which �xes either 3 or 13 or 23 points or a
semi-homology of order 3 which �xes one point,

4. a planar collineation of order 3, which �xes seven points and lines of a
subplane of the order 2,

5. a planar collineation of order 23 which �xes thirtheen points of a subplane
of order 3.

Finally we restate the very probable conjecture we made at the end of the
Remark following the discussion of the case (C2):

Conjecture. The full collineation group of a projective plane of order 26 is a
f3; 5; 13g-group.
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