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ON THE QUASIASYMPTOTIC BEHAVIOUR

OF THE STIELTJES TRANSFORMATION OF DISTRIBUTIONS

S. Pilipovi�c

Abstract. We obtain necessary and suÆcient conditions under which the quasiasymptotic
behaviour at in�nity of an orginal determines the ordinary asymptotic behaviour at in�nity of its
Stieltjes transformation and conversely.

1. Introduction. The initial and �nal value Abelian theorems for the
Stieltjes transformation of generalized functions were given in [4, 7, 8, 13, 15].

We have shown in [9] that under suitable conditions the Tauberian theo-
rem for the classical Stieltjes transformation (5, p. 339) implies the corresponding
Tauberian theorem for the distributional Stieltjes transformation. In investigations
we have used the notion of the quasiasymptotic behaviour at in�nity of tempered
distributions with supports in [0, 1]. For the distributional Stieltjes transforma-
tion this notion has some advantages in relation to the notions of the distributional
asymptotic behaviour quoted in [4, 7, 8]. This was analyzed in [13].

In this paper we give (Theorem 5) suÆcient conditions under which the
behaviour at in�nity of the Stieltjes transformation (S%f)(x), % 2 R n (�N0),
f 2 I 0(%), (see Section 2) determines the quasiasymptotic behaviour of f at in�ni-
ty. The given conditions are rather complicated and theoretical ones but it turns out
that these conditions are also necessary (Theorem 4). In this way we obtain (Corol-
laries 6, 7) the necessary and suÆcient conditions under which the quasiasymptotic
behavour at in�nity of an "original" determines the ordinary asymptotic behaviour
at in�nity of an "image" and conversely.

2. Notation and notions. As usualC, R, Z andN are the sets of complex,
real, integer and natural numbers; N0 =N [ f0g.

We always denote by L a positive continuous function de�ned on (0, 1) such
that

lim
t!1

L(tx)=L(t) = 1 for every x > 0:
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The function is called the slowly varying function at in�nity [13]. Also, we shall
assume that for some � > 0, L(x) � �, x 2 (0;1).

If for functions f and g, de�ned in a neighbourhood of 1, there holds

lim
x!1

f(x)=g(x) = l 6= 0;

then we say that f has the ordinary asymptotic behaviour as g and we introduce
the notation f � lg, x!1.

We denote by S 0+ the space of all tempered distributions with supports in
[0;1).

Following [3] we say that an f 2 S 0+ has the quasiasymptotic at in�nity related
to x�L(x), � 2 R, if there exists the limit in the sense of S 0:
(1) lim

k!1
f(kx)=(k�L(k)) = g(x); where 6= 0:

In this case we write for short: f has q.a.b. related to x�L(x) with the limit
g. It is known ([3]) that g(t) in (1) is equal to A f�+1(t) for some A 6= 0, where

f�+1(t) = H(t)t�=�(�+ 1) for � > �1 and

f�+1(t) = Dnf�+n+1(t) for n+ � > �1; n 2 N:

As usual, H is the characteristic function of the interval (0;1) and D stands for
the distributional derivative.

We use in this article several properties of the quasiasymptotic behaviour of
distributions which are proved in [3]. We summarize these properties in

Theorem A [3]. (i) If f 2 L1
loc (R), supp f � [0;1) and f � f�+1, x!1,

for � > �1 then f has q.a.b. related to x�L(x) with the limit g(x) = f�+1(x).

(ii) A distribution f 2 CalL0+ has q.a.b. related to x�L(x) (with the limit
f�+1) i� there exists a natural number n, n + � > 0, such that for every m � n
there exists a continuous function Fm(x) with the following properties:

suppFm � [0;1); f = DmFm; Fm � x�+mL(x)=�(m+ � + 1); x!1:

If f has q.a.b. related to x�L(x), � > n � 1, with the limit g, then f (n) has
q.a.b. related to x��nL(x) with the limit g(n), n 2 N.

(iii) If f 2 S 0+ has q.a.b. related to x�L(x), � > �1, with the limit g, then
for every m > 0, xmf(x) has q.a.b. related to xm+�L(x) with the limit xmg(x).

Following Lavoine ane Misra [7, 8], we give the de�nition of the distributional
Stieltjes transformation in the way presented in [12].

The space J 0(%), % 2 Rn(�N0), is the space of all distributions with supports
in (0;1) such that f 2 J 0(%) i� there exists k 2 N0 and F 2 L1

loc (R), suppF �
[0;1), such that

(2) (a) f = DkF ; (b)

Z
1

0

jF (t)j(t + �)�%�kdt <1 for � > 0:
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If instead of (b) we suppose that there exist C = C(F ) and " = "(F ) > 0
such that

(c) jF (x)j � C(1 + x)�+k�1�" for x � 0;

the corresponding space is denoted by I 0(%). Obviously, I 0(%) � J 0(%).

The Stieltjes transformation S%, % 2 Rn (�N0) of a distribution f from J 0(%)
with the properties given in (1) is a complex valued function S%f given by

(S%f)(s) := (%)k

Z
1

0

F (t)(t+ s)���kdt; s 2 C n (�1; 0];

where (%)k = %(% + 1) . . . (% + k � 1), k > 0, and (%)0 = 1. It is proved in [8] that
S%f is a holomorphic function in C n (�1; 0]. If f 2 J 0(%+ k), then Dkf 2 J 0(%)
and

S%(D
kf) = (%)k(S%+kf):

Troughout the paper we shall assume that f 2 I 0(%), i.e. that (a) and (c)
hold for f .

It is proved in [12] that for f 2 I 0(%)

x[%+k](S%f)+ (x) 2 L1
loc (R);

where

(S%f)+ (x) =

�
0; x � 0

(S%f)(x); x > 0

and [%+ k] is the greatest integer not exceeding %+ k. If (S%f)+ 2 L1
loc (R), then

we denote by (S%f)+ the corresponding regular distribution. If xl�1(S%f)+ (x) 62
L1
loc (R) but xl(S%f)+ (x) 2 L1

loc (R), where l 2 N, l � [%+k], then (S%f)+ denotes

the following regularization of (S%f)+:

(3)

h(S%f)+ (x); �(x)i =
Z 1

0

(S%f)+ (x)

�
�(x) � �(0)� � � ��

� xl�1

(l � 1)!
�(l�1)(0)

�
dx+

Z
1

1

(S%f)(x)�(x)dx; � 2 S:

Let n 2 N, % 2 R n (�N0), k 2 N0 be given numbers. We put

Ln;%;k;x =
(�1)n+1�(%+ k)

(n+ 1)!�(n+ %+ k)
Dn+1x2n+%+k+2Dn+1

and
Ln;%;k;x = Dk+1Ln;%;k+1;x ([12]):

Theorem B. [12] Let f 2 I 0(%). For every � 2 S
lim
n!1

hLn;%;k;x(S%f)+ (x); �(x)i = hf(x); �(x)i: (k is from (c)):
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We shall need the following three theorems.

Theorem C. Let an;m; n; m 2 N, be a matrix of complex numbers.

(i) If an;m converges uniformly in m 2 N to am as n ! 1 and limm!1 am
exists, then

lim
n!1

lim
m!1

an;m = lim
m!1

lim
n!1

an;m = lim
n!1

m!1

an;m:

(ii) If limn!1 an;m exists for every m 2 N, limm!1 an;m exists for every
n 2 N, limn;m!1 an;m exists, then an;m converges uniformly in n 2 N as m!1.

The assertions in Theorem C are well-known (see [2], for example).

Theorem D. [1] Let g be a locally integrable function on (0;1) such that
for some p Z a

0

x�pjg(x)jdx and

Z
1

a

xpjg(x)jdx converges (a > 0):

Then, there holdsZ
1

0

g(x)L(�x)dx � L(�)

Z
1

0

g(x)dx; �!1:

Theorem E. [13] (i) Let f 2 S 0+ and f have q.a.b. related to xaL(x) with
the limit Cfa+1(x) (C 6= 0). Then for %� 1 > a, % 62 �N0

(S%f)(x) � C
�(%� 1� a)

�(%)
x�%+1+aL(x) as x!1:

(ii) If f 2 J 0(%) and (S%+1f)(x) � x�L(x), x!1, where � < �1, � 62 �N,

then (S%f)(x) = %
R
1

x
(S%+1f)(t)dt and

(S%f)(x) � %

��� 1
x�+1L(x); x!1:

The second part of Theorem E is not explicitely stated in [13] but it is proved
during the course of proving the main theorem in [13].

3. Preliminary lemmas. Lemma 1. Let % 2 R n (�N0), k 2 N0 and
 2 C. Then for every n 2 N

n+1X
i=1

�
n+ 1

i

�
(�1)i(2n+ %+ k + 2) . . . (2n+ %+ k + 3� i)(2n+ %

+k +  + 2� i) . . . (%+ k +  + i+ 1) + (2n+ %+ k +  + 2) . . . (%+ k +  + 1)

= (�1)n(1� ) . . . (n� )(%+ k �  + 1)(n+ 1)(4)

Proof. The proof follows by using the Leibniz formula

fDmg =

mX
i=0

(�1)i
�
m

i

�
Dm�i(Difg); f 2 C1; g 2 D0
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in Dn+1x2n+%+k+2Dn+1x and by using the equality

Dn+1x2n+%+k+2Dn+1x = (�1)n(1� ) . . . (n� )(%+ k +  + 1)n+1x
%+k+ :

Now we give a lemma which is a consequence of [12, Lemma 1].

Lemma 2. Suppose that f 2 S 0+ and that f has q.a.b. related to x�L(x),
where � < % � 1. Then, there exist k 2 N0, k + � > 0 and a continuous function
F , suppF � [0;1) such that f = DkF and for

F1 =

Z x

0

F (t)dt; x 2 R;

Ln;%;k+1;xS%+k+1F1(x) � F1(x)

x(1 + x)�+k
converges uniformly to zero in (0;1).

Proof. By Theorem A (ii) we have that for some k 2 N, k+% > 0, and some
continuous function F , suppF � [0;1), f = DkF and F � x�+kL(x) �(�+k+1),
x!1. Thus, for some C > 0

jF (x)j � C(1 + x)�+k ; x � 0; i.e. f 2 I 0(%):

By [12, Lemma 1] we obtain the assertion of Lemma 2. Namely, in the proof of
Lemma 1 in [12] we have to use the inequality jF (x)j < C(1+x)�+k, x � 0, instead
of [12, (c)]. Let us notice that � + k > 0.

Lemma 3. Let f 2 I 0(%) and (S%f)(x) � x�L(x), x ! 1, � > �1. Then

(S%f)+ (x) has q.a.b. to x�L(x) as well. ((S%f) is de�ned by (3):)

Proof. We have (� 2 S)
1

k�L(k)
h(S%f)+ (kx); �(x)i = 1

k�+1L(k)

�
(S%f)+ (x); �

�
x

k

��

=
1

k�+1L(k)

Z 1

0

(S%f)(�(x=k) � �(0)� � � �

� � � �
�x
k

�l�1 ��(l�1)(0)
(l � 1)!

�
dx+

1

k�+1L(k)

Z
1

1

(S%f)(x)�
�x
k

�
dx:(5)

Since the �rst part on the right hand side of (5) converges to zero as k ! 1 we
have to prove that

1

k�L(k)

Z
1

1=k

(S%f)(kx)�(x)dx !
Z
1

0

x�L(x)�(x)dx as x!1:

Recall that (S%f)(x) � x�L(x), x ! 1. This implies that for a given " > 0
there exists x0 > 0 such that

(6) j(S%f)(x)� x�L(x)j � "x�L(x); x � x0 > 1:
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We use the following decomposition:

1

k�L(k)

Z
1

1=k

(S%f)(kx)�(x)dx

=
1

k�L(k)

Z x0=k

1=k

(S%f)(kx)�(x)dx +

Z
1

x0=k

(S%f)(kx)�(x)dx:(7)

The �rst member on the right hand side of (7) tends to zero when k ! 1
because

(8)
1

k�L(k)

Z x0=k

1=k

j(S%f)(kx)�(x)jdx � M

k�L(k)
max
R
fj�(x)jgx0 � 1

k

where
M = maxfj(S%f)(x)j; 1 � x � x0g:

Also, one can prove easily that for a given x0 > 1

(9)
1

L(k)

Z x0=k

0

jx�L(kx)�(x)jdx ! 0 as k !1:

Now by (6), (8), (9), Theorem D and����� 1

k�L(k)

Z
1

1=k

(S%f)(kx)�(x)dx � 1

k�L(k)

Z
1

0

(kx)�L(kx)�(x)dx

�����
� 1

k�L(k)

Z x0=k

1=k

j(S%f)(kx)�(x)jdx +
1

k�L(k)

Z x0=k

0

j(kx)�L(kx)�(x)jdx

+
1

k�L(k)

Z
1

x0=k

j(S%f)(kx) � (kx)�L(kx)jj�(x)jdx

we obtain the assertion

4. Main results. First we prove the following theorem.

Theorem 4. If f 2 S 0+ and f has q.a.b. related to x�L(x), %�2 < � < %�1,
% 2 R n (�N), then the double sequence

(10)

(*
(S%+k+1F1)+(x)

m�+k+1L(m)
; Ln;%;k+1;x�(k+1)(x)

+
; m; n 2 N

)
; � 2 S;

converges uniformly in n 2 N, as m ! 1, where k 2 N, k + � > 0, and F1 are
de�ned in the proof of Lemma 2.

Proof. Let

an;m =

*
Ln;%;k;x(S%f)+(mx)

m�L(m)
; �(x)

+
:
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Since

an;m = (�1)k+1(%)k+1
*
(S%+k+1F1)+(mx)

m�+k+1L(m)
; Ln;%;k+1;x�(k+1)(x)

+

we have to prove that an;m converges uniformly in n 2 N as m ! 1. First we
shall prove that the conditions of Theorem C (i) are satis�ed. Then Theorem 4 will
follow from Theorem C (ii).

Theorem B implies

an;m ! am =

�
f(mx)

m�L(m)
; �(x)

�
; n!1; m 2 N:

Since

an;m � am = (�1)k+1(%)k+1
Z
1

0

Ln;%;k+1;x(S%+k+1F1)(mx)� F1(mx)

m�+k+1L(m)
�(k+1)(x)dx

= (�1)k+1(%)k+1
Z
1

0

Ln;%;k+1;x(S%+k+1F1)(mx)(mx)(1 +mx)�+k

(mx)(1 +mx)�+km�+k+1L(m)
�(k+1)(x)dx;

from Lemma 2 and

mx(1 +mx)�+k

m�+k+1L(m)
� 2

mx(1 + (mx)�+k)

�m�+k+1
� 2x+ 2x�+k+1

�
; x � 0

we obtain that

an;m � am ! 0 uniformly in m 2 N as n!1:

By Theorem E (i) we have (S'f)(x) � �(%���1)
�(%) x��%+1L(x), x ! 1. Since

�1 < � � % + 1 < 0, we have by Lemma 3 that (S%f)+(x) has q.a.b. related to

x��%+1L(x) with the limit �(%���1)
�(%) x��%+1.

By Leibniz formula we have

Dn+1x2n+%+k+2Dn+1(S%+k+1F1)(x)

= Dn+1
n+1X
i=0

(�1)i
�
n+ 1

i

�
((x2n+%+k+2)(i)(S%+k+1F1)(x))

(n+1�i)

=
n+1X
i=1

(�1)i
�
n+ 1

i

�
(2n+ %+ k + 2) . . . (2n+ %+ k + 3� i)(x2n+%+k+2�i

� (S%+k+1F1)(x))(2n+2�i) + (x2n+%+k+2)(S%+k+1F1(x))
(2n+2):

Let  = � � %+ 1. We have

x2n+%+k+2�i(S%+k+1F1)(x) has q.a.b. related to x2n+%+k+�iL(x)

with the limit
�(�)x2n+%+k++2�i=(�(%)(%)k+1):
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Lemma 1 and Theorem A (iii) imply that Dn+1x2n+%+k+2(S%+k+1F1)(x) has
q.a.b. related to x%+k+L(x) with the limit

(�1)n(1� ) . . . (n� )(%+ k +  + 1)n+1
�(�)

�(%)(%)k+1
x+k+%:

Thus we obtain

lim
n!1

lim
m!1

(�1)(k+1)(%)k+1
*
Ln;%;k+1;x(S%+k+1F1)+(mx)

m�+k+1L(m)
; �(k+1)(x)

+

= � lim
n!1

(�1)k+1�(%+ k + 1)

(n+ 1)!�(n+ %+ k + 1)

�(n�  + 1)

�(�)
�(%+ k +  + n+ 2)

�(%+ k +  + 1)

�(�)
�(%)

hx�+k+1; �(k+1)(x)i:

To prove that the last limit exists we have to use the Stirling formula �(s+1) �p
2�e�sss+1=2, s!1.

Thus, for the double sequence an;m Theorem C (i) holds and Theorem C (ii)
implies the assertion.

Tauberian theorem 5. Let f 2 I 0% and let (S%f)+(x) have q.a.b. related

to x�L(x) where �1 < � < 0. If for any � 2 S the double sequence (10) converges
uniformly in n 2 N as m!1, then f has q.a.b. related to x�+%�1L(x).

Proof. Follows from Theorem C (i) with an;m de�ned as in the proof of
Theorem 5.

Theorem 4 and 5 imply

Corollary 6. Let f 2 I 0(%), % 2 R n (�jboldN0) and �1 < � < 0. The
conditions

(i) f has q.a.b. related to x�+%�1L(x);

(ii) (S%f)+(x) has q.a.b. related to x�L(x);

are equivalent i� the double sequence (10) converges uniformly in n 2 N as m!1.

Also, Theorems 4, 5 and Theorem E (ii) imply

Corollary 7. Let f 2 I 0(% � p) % 2 R n (�N0), p 2 N and �1 < � < 0.
The conditions

(i) f has q.a.b. related to x��p+%�1L(x),

(ii) (S%f)(x) � x��pL(x); x!1,

are equivalent i� for every � 2 S the double sequence

(11)

*
Ln;%�p;k;x(S%�pf)+(mx)

m��p+%�1L(m)
; �(x)

+
; m; n 2 N

converges uniformly in n 2 N as m!1.
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At the end we give a "classical" result on the classical Stieltjes transformation
of functions.

Corollary 8. Let f be a locally integrable function such that f 2 I 0(%� p),
% � p > 0, p 2 N and let �1 < � < 0. If (S%f)(x) � x��pL(x), x ! 1, and the
double sequence (11) converges uniformly in n 2 N as m ! 1, then f is the s-th
classical derivative (s 2 N0) of some function F 2 L1

loc (R) for which

F � Cx��p+%+s�1L(x); x!1 (C 6= 0)

holds.
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