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A NOTE ON MINKOWSKI FUNCTIONALS

OF A TOPOLOGICAL VECTOR SPACE

Kazuaki Kitahara and Lie-Ming Liu

Abstract. We consider under what locally convex spaces the lower semi-continuous semi-
norms coincide with the semi-norms which are continuous relative to the strong topology Fur-
thermore in a topological vector space we study relations between the lower semi-continuous
(F )-semi-norms and the (F )-semi-norms which are continuous relative to the strong topology in
the sense of topological vector spaces.

1. Introduction. Let E(t) be a Hausdor� locally convex space and E0

be its dual. It is well known that the locally convex topology de�ned by the
system of lower semi-continuous semi-norms relative to t is identical with the strong
topology �(E;E0). Then the semi-norms which are lower semi-continuous relative
to t are always �(E;E0)-continuous. In this note, we consider that under what
conditions the converse mentioned above is always true. Further in a Hausdor�
topological vector space E(t) we replace \semi-norm" with \(F )-semi-norm" and
study relations between the lower semi-continuous (F )-semi-norms relative to t and
the (F )-semi-norms which are continuous relative to the strong topology in the sense
of topological vector spaces. Throughout this note, we consider the spaces which
are Hausdor� locally convex spaces or Hausdor� topological vector spaces over the
real or complex �eld K. We mostly use notations and de�nitions of Adasch, Ernst
and Keim [1] and K�othe [3]. In section 2 we consider the case of locally convex
spaces and consider the case of topological vector spaces in section 3.

2. In locally convex spaces. We shall need the following results.

(1) Let P be the set of real numbers. Then a real valued function f(x) on
a topological space R is lower semi-continuous if and only if for each r 2 P the
subset fx j f(x) � rg is closed (K�othe [3]).

(2) Let E(t) be a topological vector space and f(x) be a linear functional.
Then f(x) is continuous if and only if f�1(0) = fx j f(x) = 0g is closed in E(t)
(Robertson and Robertson [4]).
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Now using these results, we obtain the following

Theorem 1. Let E(t) be a locally convex space and E0 be its dual. Then

the semi-norms which are lower semi-continuous relative to t coincide with the

�(E;E0)-continuous semi-norms if and only if the Mackey topology �(E;E0) is

identical with the strong topology �(E;E0).

Proof. If �(E;E0) = �(E;E0), then U = fx j p(x) � 1g is �(E;E0)-closed
for an arbitrary �(E;E0)-continuous semi-norm p(x) on E. From a property of
locally convex topologies on E which are compatible with the dual pair (E;E0), U
is t-closed. Thus p(x) is lower semi-continuous on E(t) from (1). Conversely to
show that �(E;E0) = �(E;E0), if we denote the dual space of E(�(E;E0)) by E0� ,

it suÆces to show that E0� = E0. If u(x) is an arbitrary �(E;E0)-continuous linear

functional, then the semi-norm p(x) = ju(x)j for all x 2 E is a �(E;E0)-continuous
semi-norm. By the assumption, p(x) is lower semi-continuous on E(t). HenceT
0<rfx j p(x) � rg is t-closed. Since

T
0<rfx j p(x) � rg = fx j p(x) = 0g, the

subset fx j u(x) = 0g is t-closed. So u(x) is t-continuous from (2). This completes
the proof.

Example 1. Let  be a �nite sequence space. Then in the dual pair (l1;  ),
we consider the space l1(�(l1;  )). In l1(�(l1;  )), it has its dual  and �(l1;  ) is
identical with the l1-norm topology.

Thus l1 is the dual of l1(�(l1;  )). In l1, we denote by e the sequence
such that e = (an), an = 1 for all n 2 N . Then if we consider the semi-norm
p(x) = jhe; xij = j

P1
i=1 xij for all x 2 l1, then p(x) is �(l1;  )-continuous but not

lower semi-continuous relative to �(l1;  ) since e is an element of l1 but not of  .

3. In topological vector spaces. Following Adasch, Ernst and Keim [1],
we begin with explanations of some de�nitions.

De�nition 1. Let E be a vector space over K. A sequence (Un) of subsets
Un of E is called a string if (i) every Un is balanced and absorbing, (ii) (Un) is
summative, that means Un+1 + Un+1 � Un for all n 2 N . The subset Un is called
the n-th knot of (Un). Further let E(t) be a topological vector space. A string (Un)
in E(t) is called topological (closed) if every Un is a neighbourhood of 0 (a closed
subset).

Remark. In a topological vector space, we can take a set of strings whose
knots form a base of neighbourhoods of 0.

De�nition 2. An (F )-semi-norm on a vector space E over K is a real valued
function p : E ! R (R is the real �eld) satisfying that for all x; y 2 E (i) p(x) � 0,
(ii) p(x+ y) � p(x) + p(y), (iii) p(�x) � p(x) for all � 2 K with j�j � 1 and (iv) if
(�n), �n 2 K converges to 0, then (p(�nx)) converges to 0.

De�nition 3. Let (Un) be a string on a vector space E. Then we call q(x) the
associated (F )-semi-norm of (Un) if the (F )-semi-norm is given by the following
process. First we prepare the rational dyadic numbers Æ > 0 of the following form;
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Æ = n +
P1

k=1 "k � 1=2
k (n = 0 or n 2 N), where "k = 1 for at most �nitely

many k 2 N and "k = 0 otherwise. For each Æ, we de�ne a subset WÆ of E by
WÆ =

Pn
1 U1 +

P1

k=1 "kUk+1. If we put q(x) = inffÆ j x 2 WÆg for all x 2 E, then
q(x) is an (F )-semi-norm on E.

De�nition 4. An (F )-semi-norm p(x) on a vector space E has (�) property
if fx j p(x) � 1=2n�1g = fx j q(x) � 1=2n�1g n 2 N , where q(x) is the associated
(F )-semi-norm of the string (Un), Un = fx j p(x) � 1=2n�1, n 2 N .

Using these de�nitions, we obtain the following

Proposition. Let E(t) be a topological vector space and (Un) be a closed

string in E(t). Then there exists an (F )-semi-norm p(x) with (�) property which is

lower semi-continuous and satis�es Un � fx j p(x) � 1=2n�1g � Un�1 for n � 2.

Proof. Using a similar method to De�nition 3, for (Un) if we de�ne a closed

subset VÆ of E by VÆ =
Pn

1 U1 +
P1

k=1 "kUk+1 for each rational dyadic number
Æ and if we put p(x) = inffÆ j x 2 VÆg, then clearly p(x) is an (F )-semi-norm.
Further p(x) is lower semi-continuous, since fx j p(x) � rg =

T
r�Æ VÆ for each

nonnegative number r.

Now we shall show that p(x) has (�)-property. Let q(x) be the associated
(F )-semi-norm of the string (Wn), where each Wn = fx j p(x) � 1=2n�1g n 2 N .
For each n 2 N , if we set W 0

n = fx j q(x) � 1=2n�1g, then clearly Wn is contained
in W 0

n. Conversely for an arbitrary x 2 W 0
n, we obtain that

x 2 Wn +Wm =
\

1=2n�1<Æ

VÆ +
\

1=2m�1<Æ

VÆ � Un + Uk +Um + Uk for all k;m 2 N

from the de�nition of the associated (F )-semi-norm. On the other hand, as each

Wn =
\

i2N

(V1=2n�1+1=2i�1) =
\

i2N

Un + Ui;

if we put k = i+ 3 and m = i+ 3, i 2 N in the above formula, then we have x 2
Un + Ui+3+Ui+3 + Ui+3 � Un + Ui for all i 2 N and hence x is an element of Wn.
Finally from Wn =

T
i2N Un + Ui, we obtain that Un �Wn � Un + Un � Un�1 for

n � 2.

In a topological vector space E(t), we can de�ne a linear topology if we take
knots of all closed strings as a base of neighbourhoods of 0. We call this linear
topology the strong topology of E(t) and denote it by tb. A topological vector space
E(t) is called barrelled in L if t is identical with tb [1]. If E(t) is a locally convex
space and E is the dual of E(t), then clearly tb is �ner than �(E;E0). As in the case
of locally convex spaces, barrelledness in L is expressed by the lower semicontinuous
(F )-semi-norms from Proposition.

Corollary. A topological vector space E(t) is barrelled in L if and only if t
is identical with the linear topology which is generated by the system of the t-lower
semi-cohtinuous (F )-semi-norms with (�) property.
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In a topological vector space E(t), it seems to be a gap between the tb-
continuous (F )-semi-norms and the t-lower semi-continuous ones since we cannot
apply duality methods and properties of semi-norms. As in Theorem 1, veen though
we set a locally convex space E(t) with its dual E0 such that E(tb) is barrelled in
L, if E0 is a proper subspace of E0b, where E

0
b is the dual of E(tb), then the tb-

continuous (F )-semi-norms do not coincide with the t-lower semi-continuous ones.
For instance,  (Æ( ; psi)) or l1(Æ(l1;  )) in Example 1 applies. Hence we shall
consider a negative partial answer for the rest of this note. Before giving a theorem,
we need the following two lemmas.

Lemma 1. Let E(t) be a metrizable topological vector space and (Un) be a

closed string whose knots form a base of neighbourhoods of 0. Then the associated

(F )-norm p(x) of (Un) has (�) property. (We call p(x) (F )-norm if p(x) is an

(F )-semi-norm such that p(x) = 0 implies x = 0.)

Proof. Clearly each Un is contained in Vn = fx j p(x) � 1=2n�1g from
De�nition 3. Conversely for an arbitrary x 2 Vn, if p(x) < 1=2n�1, then x is an
element of W1=2n�1 = Un. If p(x) = 1=2n�1, then we obtain that x 2 W1=2n�1 +

1=2m�1 = Un + Um for all m 2 N , hence x 2
T
m2N Un + Um = Un = Un from

the assumption. Thus it holds that Un = Vn for all n 2 N and clearly p(x) is an
(F )-norm.

In a topological vector space E(t), for an arbitrary subset A of E we denote
by B(A) the balanced hull of A. Clearly the subset B(A) = fy j y = �x for all
x 2 A and all � 2 K with j�j < 1g. From this we obtain the following

Lemma 2. Let E(t) be a topological vector space and C be a compact subset

in E(t). Then the balanced hull B(C) of C is compact.

Proof. Since, in E(t), the bilinear map F from the product space K � E(t)
onto E(t) de�ned by (�; x) ! �x for each � 2 K and each x 2 E is continuous,
if we consider the image of the compact subset f� j j�j � 1g � C, we obtain the
conclusion.

Using these lemmas, we prove the following

Theorem 2. Let E(t) be a topological vector space whose strong topology tb

is a metrizable linear topology and strictly �ner than t. Further, it is assumed that

in E(t) there exists a tb-bounded sequence (xn) which does not converge relative

to tb but converges to 0 relative to t. Then among the (F )-semi norms with (�)
property on E, the tb-continuous (F )-semi-norms do not coincide with the t-lower
semi-continuous (F )-semi-norms.

Proof. In E(t), let p(x) be a t-lower semi-continuous (F )-norm which gener-
ates tb and let (xn) be a sequence which satis�es the assumptions and p(xn) � " > 0
for all n 2 N and some positive number ". These restrictions do not lose generality
from Proposition and the property of the sequence (xn). Now we shall construct a
tb-closed string (Un) whose knots form a base of tb-neighbourhoods of 0 and which
is not t-closed. In the �rst place, we set the �rst knot U1 = fx j p(x) � dg with
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" > d > 0. From tb-boundedness of (xn), there is a positive number �(1) such that
p(�(1)xn) � d=23 for all n 2 N . Further, let B1, be the subset fx j p(x) � d=23g
and C1 be the subset fx j p(x) � d=24g, then we take a y(1) 2 B1 � C1 such that
y(1) 62 [xn] for all n 2 N , where each [xn] is the one dimensional subspace generated
by xn. (It is possible if we take a suÆciently small d.) If we set the second knot

U2 = C1 [ B((�(1)xn + y(1))n);

then U2 has the following properties: (i) as U2 is contained in B1+B1, p(x) � d=22

for all x 2 U2, (ii) U2 is absorbing and balanced, and (iii) since C1 is t-closed and
the seqnence (�(1)xn + y(1)) converges to y(1) relative to t, for suÆciently large
n each element �(1)xn + y(1) of U2, does not belong to C1. For the rest knots,
we can determine �(i), Bi, Ci and y(i), i � 2 and set Ui+1 in the similar manner.
Thus we can obtain the string (Un) which generates tb. So it is suÆcient to show
that each Ui is t

b-closed but not t-closed.

Since for each Ui+1 the sequence (�(i)xn) converges to 0 relative to t, from
Lemma 2 the subset Ci[B((�(i)xn+y(i))n)[B((y(i))) is t-closed. Hence we show
that for each y(i) 2 B((y(i))) and y(i) 62 Ci there exists a t

b-neighbourhood S of
0 with (y(i)+S)\Ui = �. If for any tb-neighbourhood O of 0 (y(i)+O)\Ui 6= �,
since Ci is t-closed and each balanced hull B((�(i)xn+y(i))) of �(i)xn+y(i), n 2 N
is tb-compact, then there exists a subsequence ("j(�(i)xnj+y(i))) with 0 < j"j j � 1,
j 2 N which converges to y(i) relative to tb and hence its scalar sequence ("j)
converges to . Then as it holds that p((�(i)xnj + y(i)) � "j(�(i)xnj + y(i))) �
p( � "j)�(i)xnj) + p(( � "j)y(i)) for all j 2 N , the sequence ((�(i)xnj + y(i)))
also converges to y(i) relative to tb from tb-boundedness of (xn) but this fact
contradicts the assumption that p(xn) � " > 0 for all n 2 N . Thus each Ui+1 is
tb-closed. Finally if we set the sequence (�(i)xn+ y(i)) which is contained in Ui+1,
then it converges to y(i) relative to t which does not belong to Ui+1.

Consequently as each Ui+1, i 2 N is not t-closed, the associated (F )-norm
g(x) of the string (Ui) has (�)-property from Lemma 1 and is not t-lower semi-
continuous but tb-continuous.

Example 2. We set the sequence space l1=2 = fx = (xn)j
P1

n=1 jxnj
1=2 <1g

and on this space consider the following two linear topologies: one is the linear
topology t1=2 generated by the natural paranorm k�k1=2 with kxk1=2 =

P1
n=1 jxnj

1=2

for all x 2 l1=2 and the other is the topology of simple convergence ts. l
1=2(t1=2)

is complete metrizable and has a base of neighbourhoods of 0 which consists of
U" = fx j kxk1=2 � "g, " > 0. So l1=2(t1=2) is barrelled in L. On the other hand,

since ts is strictly coarser than t1=2 and every U" is ts-closed, we have tbs = t1=2
from the above fact. If we consider the sequence (xn) such that x1 = (1; 0; 0; . . . ),
x2 = 0; 1; 0; . . . ), . . . , then l1=2(ts) has a sequence satisfying the conditions of
Theorem 2. Hence the t1=2-continuous (F )-semi-norms with (�)-property do not
coincide with the ts-lower semi-continuous ones.

Example 3. Let t1 be the l
1-norm topology on l1=2, then l1=2(t1) is barrelled

but not barrelled in L (Khaleelulla [2]). As t1 is strictly coarser than t1=2 but
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strictly �ner than ts, t
b
1 = t1=2 from the same argument as in Example 2. As in

the case of Example 2 if we consider the sequence (xn) such that x1 = (1; 0; 0; . . . ),
x2 = (1=22; 1=22; 0; 0; . . . ), . . . , xn = (1=n2; 1=n2; . . . ; 1=n2; 0; 0; . . . ), . . . , then in
l1=2(t1) the t1=2-continuous (F )-semi-norms with (�)-property do not coincide with
the t1-lower semi-continuous ones.
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