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ON THE APPROXIMATION OF CONTINUOUS FUNCTIONS

Alexandru Lupa�s

Abstract. We construct a sequence (Jn) of linear positive operators de�ned on the space
C(K), K = [a; b], with the properties: a) Jnf(f 2 C(K)) is a polynomial of degree � n; b)
if f 2 C(K) then there exists a positive constant C0 such that kf � Jnfk � C0 � !(f ; 1=n),
n = 1; 2; . . . , where k � k is the uniform norm and !(f ; �) is the modulus of continuity; c) for
f 2 C(K) there exists a C1 > 0 such that

jf(x)� (Jnf)(x)j � C1 � ! (f ; �n(x)); x 2 K

where
�n(x) =

p
(x� a)(b � x)=n+ n�2; n = 1; 2; . . . ;

d) if ��
n
(x) =

p
(x� a)(b � x)=n and

(J�
n
f)(x) = (Jnf)(x) +

b� x

b� a
[f(a) � (Jnf)(a)] +

x� a

b� a
[f(b)� (Jnf)(b)];

then for every continuous function f : [a; b]! R there exists a positive constant C2 such that

jf(x)� (J�
n
f)(x)j � C2 � !(f ; �

�

n
(x)); x 2 [a; b]; n = 1; 2; . . . :

In this manner are presented constructive proofs of the well-known theorems of Jackson [8], Timan

[14] and Teljakovski�i [13]. Likewise, some other approximation properties of the operators (Jn)
are investigated.

1. Introduction and de�nitions. Let K be a compact interval of the
real axis and denote by C(K) the normed linear space of continuous real-valued
functions on K. As usually, the space C(K) is normed by means of the uniform
norm, that is kfk = maxt2K jf(t)j, f 2 C(K). We will use the notation k � kK to
indicate that the maximum is taken over K whenever it is necessary to make it
clear which interval the norm is taken over. Likewise, by �n is denoted the linear
space of polynomials, with real coeÆcients, of degree at most n.

For f 2 C(K) let (P �nf), P
�

nf 2 �n be the sequence of polynomials of best
approximation to f ; more precisely

kf � P �nfk � kf � pnk
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for all polynomials pn, pn 2 �n. It is known that the operator P �n : C(K) ! �n

which maps f into P �nf is not a linear transformation. At the same time, if f 2
C(K) and !(f ; �) is modulus of continuity de�ned, for Æ � 0, by

!(f ; Æ) = max
jt�xj�Æ

t;x2K

jf(x)� f(t)j;

then according to the well-known theorem of Jackson ([5], [8], [10]) the sequence
(P �nf) satis�es the inequalities

kf � P �nfk � C0 � !(f ; 1=n); C0 2 (0; 1 + �2=2]; n = 1; 2; . . . :

Several authors (see [2], [3], [7]) have constructed explicitly sequences of polynomials
(Anf) which have essentially the same degree of precision of aproximation to f , as
P �nf . These polynomials Anf , n = 1; 2; . . . ; f 2 C(K), have the properties:

i) the operator An : f ! Cnf is linear on C(K);

ii) An(C(K)) � �m(n); m(n) � n;

iii) there exists an interval [c; d], a < c < d < b, K = [a; b], such that for
f 2 C(K) : kf � Anfk[c;d] � C � !(f ; 1=n), C > 0, n = 1; 2; . . . . Therefore,
these kinds of polynomial operators An : C(K) ! �m(n), n = 1; 2; . . . ,
cannot be used to approximate on all of K = [a; b]. They are only eÆcient
on subintervals [c; d] with [c; d] � K.

In 1951, Timan [14] has proved that if f 2 C[a; b], then for every n there
exists an algebraic polynomial �nf of degree at most n such that for all x 2 [a; b]

jf(x)� (�nf)(x)j � C1 � !(f ;
p
(x� a)(b� x)=n+ n�2) n = 1; 2; . . .

where C1, is a positive constant. The characteristic peculiarity of this inequality is
the improvement of the order of approximation near the endpoints in comparison
to the usual Jackson theorem. This motivates the following:

De�nition. A sequence of operators (Jn) de�ned on C(K), K = [a; b], is said
to be of Jackson-type, if

a) Jn(C(K)) � �n, n = 1; 2; . . . ;

b) Jn : C(K)! �n is a linear positive operator;

c) for every f , f 2 C(K), there exists a positive constant C0 such that
kf � Jnfk � C0 � !(f ; 1=n), n = 1; 2; . . . , where k � k = k � kK ;

d) if f 2 C(K), then for all x 2 [a; b] and n = 1; 2; . . .

jf(x)� (Jnf)(x)j � C1 �!(f ;
p
(x� a)(b� x)=n+n�2),

C1 being a positive constant.

Takin into account that we will be concerned with the approximation of con-
tinuous functions f : K ! R, K = [a; b], by elements from �n, and since the space
�n remains invariant under the transformation x = (2t�a� b)=(b�a), t 2 [a; b], it
suÆces to carry out the analysis for the interval [�1; 1]. Throughout this paper, C
will denote positive constants which are, in general, di�erent. Likewise, I denotes
the interval [�1; 1].
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2. A quadrature formula. Let C(j)(I) be the linear space of all functions
f : I ! R which have a continuous jth derivative on the interval I . In order to
prove some identities we need the following proposition.

Lemma 1. Let n be a natural number and s = s(n) = 1 + [n=2]. If f 2
C(n+2)(I), then there exists a point � = �(n; f), � 2 (�1; 1), such that

Z 1

�1

f(t)p
1� t2

dt =
2�

n+ 2

"
1� (�1)n

4
f(�1) +

sX
k=1

f(xkn)

#
+Rn(f) (1)

where

Rn(f) =
�

2n+1
� f

(n+2)(�)

(n+ 2)!
and xkn = cos

(2k � 1)�

n+ 2
: (2)

Proof. Let us suppose that n is an even natural number, n = 2m�2, m � 1.
Then (1) may be written asZ 1

�1

f(t)p
1� t2

dt =
�

m

mX
k=1

f

�
cos

(2k � 1)�

2m

�
+R2m�2(f) (3)

where R2m�2(f) =
�

22m�1

f (2m)(�)
(2m)! , � 2 (�1; 1).

This is the Mehler-Hermite formula with remainder term [9, p. 111, (7.3.6.)].

Now let n be an odd natural number, n = 2m� 1. Then (1) is the same asZ 1

�1

f(t)p
1� t2

dt =
�

2m+ 1
f(�1) + 2�

2m+ 1

mX
k=1

f

�
cos

(2k � 1)�

2m+ 1

�
+R2m�1(f):

R2m�1(f) =
�

22m
f2m+1(�)

(2m+ 1)!
; � 2 (�1; 1);

which is a quadrature formula attributed to Bouzitat. We note that the remainder-
term Rn(f) from (1) may be represented on the space C(I) as

Rn(f) = �2�n�1[�1; �2; . . . ; �n+3; f ]

where [�1; �2; . . . ; �n+3] denotes the divided di�erence at a system of distinct points
�1; �2; . . . ; �n+3 from I (see [11]{[12]).

3. A sequence of Jackson type operators. Let w(t) = 1=
p
1� t2,

t 2 (�1; 1), and Lp
w, 1 � p � 1, be the class of measurable functions on I which

satisfy kfkp <1, where

kfkp =
�Z 1

�1

jf(t)jpw(t)dt
�1=p

; 1 � p <1;

and kfk1 is the sup-norm. Further, by X we denote one of the following function
spaces: C(I) or Lp

w.
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Also we use the following notation:

Tm(x) = cosm(arccosx)

'�n(x) = an � 1 + Tn+2(x)

(x � cos�=(n+ 2))2
; '�n 2 �n; an =

1

�(n+ 2)
sin2

�

n+ 2
;

tk(f) =

Z 1

�1

f(t)Tk(t)w(t)dt; f 2 X; (4)

!k =
1

tk(Tk)
=

�
2=�; k = 1; 2; . . .

1=�; k = 0:

Functions from X can be expanded in terms of Chebyshev polynomials. Every
f 2 X has the expansion

f(x) �
1X
k=1

!ktk(f)Tk(x); x 2 I; (5)

where tk(f) are the Chebyshev coeÆcients de�ned as above.

In order to try to give a simple and uni�ed approach to the theory of approx-
imation by algebraic polynomials on a compact interval, Butzer and Stens [4] have
introduced the translation operator �x, x 2 I , de�ned on X by:

(�xf)(t) = 1=2 � [f(xt+
p
1� x2

p
1� t2) + f(xt�

p
1� x2 �

p
1� t2)]; t 2 I:

If f; g 2 L1
w, then their convolution product is de�ned by means of the equality

(f � g)(x) =
Z 1

�1

(�xf)(t)g(t)w(t)dt:

This convolution has the following properties [1]: if f; g; h 2 L1
w, then f � g 2 L1

w

and:

i) f � g = g � f ; ii) f � (g � h) = (f � g) � h; iii) tk(f � g) = tk(f)tk(g);

iv) if f 2 L1
w, g 2 Lp

w, 1 � p � 1, then f �g 2 Lp
w and kf �gkp � kfk1 �kgkp.

Taking into account that for k � 1

Tk(xt+
p
1� x2 �

p
1� t2) = Tk(x)Tk(t) + k�2

p
1� x2 �

p
1� t2T 0k(x)T

0

k(t)
(6)

Tk(xt�
p
1� x2 �

p
1� t2) = Tk(x)Tk(t)� k�2

p
1� x2 �

p
1� t2T 0k(x)T

0

k(t);

it follows that (�xTk)(t) = Tk(x)Tk(t). Therefore, if f 2 X has the expansion (5),
then

(�xf)(t) �
1X
k=0

!ktk(f)Tk(x)Tk(t); (7)

(f � g)(x) �
1X
k=0

!ktk(f)tk(g)Tk(x):
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Before proving the main results we need the following simple proposition.

Lemma 2. Let '�n be de�ned as in (4) and p(t) = At2 +Bt+ C. ThenZ 1

�1

'�n(t)p(t)w(t)dt = p

�
cos

�

n+ 2

�
+

A

n+ 2
sin2

�

n+ 2
: (8)

Moreover Z 1

�1

'�n(t)p
1 + t

dt <
�
p
2

2n
;

Z 1

�1

'�n(t)dt �
�

n
: (9)

Proof. We �rst observe that

'�n

�
cos

(2k � 1)�

n+ 2

�
=

�
(n+ 2)=2�; k = 1

0; k = 2; 3; . . . ; n;

'�n(�1) =
1 + (�1)n
�(n+ 2)

sin2
�

2(n+ 2)
:

Now, let q 2 �2n+2 be de�ned by

q(t) = '�n(t)p(t) = c0nt
n+2 +Q(t); Q 2 �n+1:

It is easy to see that c0n = 2n+1anA, where an is de�ned as in (4). Using Lemma
1 we observe that

Rn(q) =
A

n+ 2
sin2

�

n+ 2
;

and from (1) we haveZ 1

�1

q(t)w(t)dt =
2�

n+ 2
q(x1n) +Rn(q) = p(x1n) +

A

n+ 2
sin2

�

n+ 2
:

If p1(t) =
p
1� t, p2(t) =

p
1� t2, then according to (8) we �ndZ 1

�1

'�n(t)w(t)dt = 1;

Z 1

�1

'�n(t)jp1(t)j2w(t)dt = 2 � sin2 �

2(n+ 2)Z 1

�1

'�n(t)jp2(t)j2w(t)dt =
n+ 1

n+ 2
sin2

�

n+ 2
:

(10)

Let �n : C(I)! R be the linear positive functional de�ned by

�n(f) =

Z 1

�1

'�n(t)f(t)w(t)dt; f 2 C(I):

Since �n(e0) = 1, e0(t) = 1, we have j�n(f)j2 � j�n(f
2). Therefore, we obtain

�n(p1) �
r
2 � sin2 �

2(n+ 2)
<

�
p
2

2n
; �n(p2) �

r
n+ 1

n+ 2
sin2

�

n+ 2
<

�

n
:
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If t�kn = tk('
�

n), i.e. '
�

n(x) =
Pn

k=0 t
�

kn!kTk(x), then from (8)

t�0n = 1; t�1n = cos
�

n+ 2
; t�2n =

2(n+ 1)

n+ 2
cos2

�

n+ 2
� n

n+ 2
:

Next we consider the kernel Ln : I � I ! R, where

Ln(x; t) =

nX
k=0

t�kn!kTk(x)Tk(t):

Taking into account (7), we obtain Ln(x; t) = (�x'
�

n)(t), that is Ln(x; t) � 0 for
(x; t) 2 I � I .

Using the kernel we de�ne the linear positive operators Jn : C(I) ! �n,
n = 1; 2; . . . , by

(Jnf)(x = ('�n � f)(x) =
Z 1

�1

Ln(x; t)f(t)w(t)dt: (11)

The main result of this section is the following:

Theorem 1. The sequences of operators (Jn) de�ned in (11) is of Jackson
type. If f 2 C(I), then

i) jf(x)� (Jnf)(x)j � C � !(f ; �n(x)), x 2 I ,

where
�n(x) =

p
1� x2=n+ n�2; C 2 (0; 1 + �

p
2 + �2=2); (12)

ii) kf � Jnfk � C1 � !(f ; 1=(n+ 2)), C1 2 (0; 8).

Proof. If

z1(t; x) = jx� tx�
p
1� x2

p
1� t2j; z2(t; x) = jx� tx+

p
1� x2

p
1� t2j; (13)

then it may be proved that for (t; x) 2 I � I

zj(t; x) � �n(x)Qn(t); j = 1; 2;

where Qn(t) = 2n
p
1� t+ n2(1� t) = 2np1(t) + n2jp1(t)j2.

From (9){(10) we have

kn = 1+

Z 1

�1

'�n(t)Qn(t)w(t)dt < 1 + �
p
2 + �2=2: (14)

On the other hand, if f 2 C(I), (t; x) 2 I � I , we have

jf(x)� (�xf)(t)j � 1=2 � jf(x)� f(xt+
p
1� x2

p
1� t2)j

+1=2 � jf(x)� f(xt�
p
1� x2

p
1� t2)j � 1=2 � !(f ; z1(t; x)) + 1=2 � !(f ; z2(t; x))

� !(f ; �n(x)Qn(t)):
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The well-known inequality !(f ;�Æ) � (1 + [�])!(f ; Æ) makes it possible to write

jf(x)� �xf(t)j � (1 +Qn(t))!(f ; �n(x)); (t; x) 2 I � I; (15)

�n(x) being de�ned in (12). Using the commutativity of the convolution product,
for f 2 C(I) and x 2 I we have

jf(x)� (Jnf)(x)j = jf(x)(e0 � '�n)(x) � (f � '�n)(x)j)

�
Z 1

�1

jf(x)� (�xf)(t)j'�n(t)w(t)dt:

In this manner, from (14){(15) we obtain

jf(x) � (Jnf)(x)j � kn � !(f ; �n(x)) � C � !(f ; �n(x))

where C � C0, C0 = 1 + �
p
2 + �2=2 and x 2 I . From !(f ; �n(x)) �

!(f ; (1+1=n)=n) � 2 �!f ; 1=n) it follows that for every x 2 I : jf(x)� (Jnf)(x)j �
2C0!(f ; 1=n). Therefore

kf � Jnfk = max
x2I

jf(x)� (Jnf)(x)j � 2C0!(f ; 1=n):

A sharper inequality may be obtained in the formula way: if Qx(t) = (x� t)2, then
from (8){(11)

(JnQx)(x) = 4

�
x2 +

n+ 1

n+ 2
(1� 2x2) cos2

�

2(n+ 2)

�
� sin2 �

2(n+ 2)
;

i.e. Wn = maxx2I j(JnQx)(x)j = n+1
n+2 sin

2 �
n+2 <

�
(n+2)2 .

It is well-known that for a positive linear operator J : C(I)! C(I), Je0 = e0, the
inequality

kf � Jfk � (1 +W=Æ2)!(f ; Æ); Æ > 0; f 2 C(I); W = max
x2I

j(JQx)(x)j

is veri�ed [5]. In our case, with Æ=�
(n+2) we obtain

kf � Jnfk � 2 � !(f ;�
(n+ 2)) � 8 � !(f ; 1=(n+ 2)):

Next we investigate the local degree of approximation by means of the poly-
nomial operators J�n : C(I)! �n, n = 1; 2; . . . , where

(J�nf)(x) = (Jnf)(x) + (1� x)=2 � [f(�1)� (Jnf)(�1)] (16)

+ (1 + x)=2 � [f(1)� (Jnf)(1)]; x 2 I;

Jn being de�ned in (11).

Theorem 2. If J�n : C(I) ! �n is de�ned as in (16), then for f 2 C(I)
there exists a positive constant C� such that

jf(x)� (J�nf)(x)j � C�!(f ;
p
1� x2=n); x 2 I; n = 1; 2; . . . ;
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Proof. Let us denote ��

n(x) =
p
1� x2=n, ("nf)(x) = f(x) � (Jnf)(x) and

suppose that x 2 I2 = (�p1� n�2;
p
1� n�2), i.e., n�2 < ��

n(x). According to
Theorem 1, for x 2 I2 we have

jf(x)� (J�nf)(x)j = j("nf)(x)� (1� x)=2 � ("nf)(�1)� (1 + x)=2 � ("nf)(1)j
� C � !(f ; �n(x)) + C � !(f ;n�2) � C0!(f ; 2�

�

n(x)) + C0 � !(f ; ��

n(x)):

More precisely

jf(x)� (J�nf)(x)j � 3C0!(f ; �
�

n(x)) x 2 I2: (17)

Next we suppose that ��

n(x) � n�2, i.e., x 2 I1 [ I3 where

I1 = [�1;�
p
1� n�2]; I3 = [

p
1� n�2; 1]:

If z1, z2 are de�ned as in (13), then for (x; t) 2 U = I3 � I we have

zj(x; t) � ��

n(x)Sn(t); j = 1; 2 (18)

where Sn(t) = 1 + n
p
1� t2 = 1 + np2(t). Indeed

zj(x; t) � p2(x)p2(t) + jtj(1� x) � p2(x)p2(t) + (1� x2) � ��

n(x)Sn(t):

From (9)

�an = 1 +

Z 1

�1

'�n(t)Sn(t)w(t)dt < 2 + �:

At the same time, for (x; t) 2 U

j(�xf)(t)� f(t)j � 1=2 � !(f ; z1(x; t)) + 1=2 � !(f ; z2(x; t))
which together with (18) implies

j(�xf)(t)� f(t)j � (1 + Sn(t))!(f ; �
�

n(x)):

Likewise, for (x; t) 2 U

j(��xf)(t)� f(�t)j � (1 + Sn(t))!(f ; �
�

n(x)):

Therefore, in case x 2 I3,

j(Jnf)(x) � (Jnf)(1)j = j(f � '�n)(x) � (f � '�n)(1)j

�
Z 1

�1

'�n(t)j(�xf)(t)� f(t)jw(t)dt � �an!(f ; �
�

n(x))

and j(Jnf)(�x) � (Jnf)(�1)j � �an!(f ; �
�

n(x)). In other words there exists a
C1 2 (0; 2 + �) such that for x 2 I3:

j(Jnf)(x)� (Jnf)(1)j � C1!(f ; �
�

n(x));

j(Jnf)(�x)� (Jnf)(�1)j � C1!(f ; �
�

n(x)):
(19)
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Let us suppose x 2 I3; from (19) and Theorem 1:

jf(x)� (J�nf)(x)j = j[f(x)� f(1)]� [(Jnf)(x)� (Jnf)(1)]

+ (1� x)=2 � [("nf)(1)� ("nf)(�1)]j
� !(f ; 1� x) + C1!(f ; �

�

n(x)) + (1� x)C0!(f ;n
�2)

� !(f ; 1� x2) + C1!(f ; �
�

n(x)) + (1� x2)C0!(f ;n
�2)

� (1 + C1)!(f ; �
�

n(x)) + C0�
�

n(x)!(f ;n
�2):

It is known that for 0 � Æ1 � Æ2 one has Æ1!(f ; Æ2) � 2Æ2!(f ; Æ1). If we select
Æ1 = ��

n(x), Æ2 = n�2, x 2 I3, then

��

n(x)!(f ;n
�2) � 2n�2!(f ; ��

n(x)):

In conclusion, for x 2 I3:

jf(x)� (J�nf)(x)j � (1 + C1 + 2n�2C0)!(f ; �
�

n(x))

that is
jf(x)� (j�nf)(x)j � C�!(f ; ��

n(x)); n = 1; 2; . . . ; (20)

with 0 < C� < 5 + (1 + 2
p
2)� + �2. Using the second inequality from (19) it may

be shown that (20) is veri�ed for x 2 I1 too. Taking into account (17) we conclude
that (20) is true for all x, x 2 I .

Theorem 3. Let Jn be de�ned as in (11) and x �xed in I. Then to each
function f 2 C(I) corresponds a system �1n, �2n, �3n of distinct points from I
such that

(Jnf)(x) = f(c � cos�=(n+ 2)) + Vn(x)[�1n;�2n;�3n; f ] (21)

where Vn(x) =
n(1�x2)+1

n+2 sin2 �
n+2 ,

Proof. In [11]{[12] it is proved that if (Ln) is a sequence of positive linear
operators de�ned on C(K) and Lne0 = e0, Lnek = akn, ek(t) = tk, then for
f 2 C(K) and x 2 K:

(Lnf)(x) = f [a1n(x)] + [a2n(x) � a21n(x)][�1n;�2n;�3n; f ] (22)

where �in = �in(f; x), i = 1; 2; 3, are distinct points from K. In our case, taking
into account that JnTk = t�knTk, k = 0; 1; 2, one �nds

a1n(x) = x � t�1n = x � cos�=(n+ 2);

a2n(x) = e2(x) � 1

2
(1� t2n)T2(x) = x2 + (1� 2x2)

n+ 1

n+ 2
sin2

�

n+ 2
;

and (22) proves the theorem.

In the case when f 2 C(2)(I) the equality (21) makes it possible to show that
the remainder-term may be written as

f(x)� (Jnf)(x) = Z(n; f; x) sin2 �=2(n+ 2)
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where for x �xed in I

Z(n; f; x) = 2

�
xf 0(�1n) +

n(1� x2) + 1

n+ 2
f 00(�2n) cos

2 �

2(n+ 2)

�
;

�in = �in(f; x) being points from I = [�1; 1].
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