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ON THE APPROXIMATION OF CONTINUOUS FUNCTIONS

Alexandru Lupas

Abstract. We construct a sequence (Jy,) of linear positive operators defined on the space
C(K), K = la,b], with the properties: a) J, f(f € C(K)) is a polynomial of degree < n; b)
if f € C(K) then there exists a positive constant Cp such that ||f — Jnf|| < Co - w(f;1/n),
n = 1,2,..., where || - || is the uniform norm and w(f;-) is the modulus of continuity; c) for
f € C(K) there exists a C1 > 0 such that

[f(@) = (Jnf) (@) < C1-w (f;An(z), z€K
An(z) =+/(z—a)b—x)/n+n"2, n=1,2...;
d) if A% (z) = /(z — a)(b—z)/n and

(T 0)@) = Un£)@) + 3~ [£(@) ~ (nH)@] + 52 [70) ~ (T PO

where

then for every continuous function f : [a,b] — R there exists a positive constant C> such that
[f(z) = (R f)(@)] < Co-w(f;AL(2), z€[ab], n=12,....

In this manner are presented constructive proofs of the well-known theorems of Jackson [8], Timan
[14] and Teljakovskii [13]. Likewise, some other approximation properties of the operators (Jy)
are investigated.

1. Introduction and definitions. Let K be a compact interval of the
real axis and denote by C'(K) the normed linear space of continuous real-valued
functions on K. As usually, the space C(K) is normed by means of the uniform
norm, that is || f|| = maxier |f(t)], f € C(K). We will use the notation || - ||k to
indicate that the maximum is taken over K whenever it is necessary to make it
clear which interval the norm is taken over. Likewise, by II,, is denoted the linear
space of polynomials, with real coefficients, of degree at most n.

For f € C(K) let (Prf), P:f € II,, be the sequence of polynomials of best
approximation to f; more precisely

If = PRIl < NI = pall
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for all polynomials p,, p, € II,. It is known that the operator P¥ : C(K) — II,
which maps f into P} f is not a linear transformation. At the same time, if f €
C(K) and w(f;-) is modulus of continuity defined, for § > 0, by

w(f;0) = max |f(z) = f(B)],
t,x€K

then according to the well-known theorem of Jackson ([5], [8], [10]) the sequence
(P? f) satisfies the inequalities

”f_Prtf”SCOw(fa]-/n): 006(071+7r2/2]> n:172;----

Several authors (see [2], [3], [7]) have constructed explicitly sequences of polynomials
(A, f) which have essentially the same degree of precision of aproximation to f, as
P f. These polynomials A, f,n =1,2,...,f € C(K), have the properties:

i) the operator A,, : f — C,,f is linear on C(K);

ii) A,(C(K)) C M, (n)s m(n) > n;

iii) there exists an interval [¢,d], a < ¢ < d < b, K = [a,b], such that for
feCK) |If —Anflle,q £ C-w(f;1/n), C>0,n=1,2,.... Therefore,
these kinds of polynomial operators A, : C(K) — Iy, n = 1,2,...,
cannot be used to approximate on all of K = [a,b]. They are only efficient
on subintervals [e, d] with [¢,d] C K.

In 1951, Timan [14] has proved that if f € C[a,b], then for every n there
exists an algebraic polynomial 7, f of degree at most n such that for all z € [a, b]

(@) = () (@) < Cr-w(f;i V(@ —a)b—2)/n+n%) n=12,...

where C', is a positive constant. The characteristic peculiarity of this inequality is
the improvement of the order of approximation near the endpoints in comparison
to the usual Jackson theorem. This motivates the following:

Definition. A sequence of operators (.J,,) defined on C'(K), K = [a,b], is said
to be of Jackson-type, if
a) J,(C(K))Cll,,n=1,2,...;
b) J, : C(K) — II, is a linear positive operator;
c) for every f, f € C(K), there exists a positive constant Cy such that
If = Jnfll < Co-w(f;1/n),n=1,2,..., where || - || = - ||x;
d) if f € C(K), then for all z € [a,b] and n = 1,2,...
[f(2) = (Juf)(@)] < Cr-w(f; /(2 — a)(b—2) /n+n"?),

(' being a positive constant.

Takin into account that we will be concerned with the approximation of con-
tinuous functions f : K — R, K = [a, b], by elements from II,,, and since the space
II,, remains invariant under the transformation x = (2t —a—0)/(b—a), t € [a,b], it
suffices to carry out the analysis for the interval [—1, 1]. Throughout this paper, C
will denote positive constants which are, in general, different. Likewise, I denotes
the interval [—1,1].
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2. A quadrature formula. Let C'Y)(T) be the linear space of all functions
f : I — R which have a continuous j** derivative on the interval I. In order to
prove some identities we need the following proposition.

LEMMA 1. Let n be a natural number and s = s(n) = 1+ [n/2]. If f €
C (1), then there exists a point 8 = 0(n, f), 8 € (—1,1), such that

Lof@) o2r |[1—(-1)" :
| A= 2 SN+ L S| +Bald) 0
where (n2) (g .

Proof. Let us suppose that n is an even natural number, n = 2m —2, m > 1.
Then (1) may be written as

LR T (2k — 1)m
/_1 \/1——t2dt = E;f (cos T) + Rom—2(f) (3)

(2m)
where Rop—a(f) = gr=r L, 0 € (—1,1).
This is the Mehler-Hermite formula with remainder term [9, p. 111, (7.3.6.)].
Now let n be an odd natural number, n = 2m — 1. Then (1) is the same as

ST LO NP SISO B - U PPN C el Vs
/_lmdt_2m+1f( 1)+ ;f<cos — >+R2m1(f).

2m—+1 0
R2m—1(f) = 22%{2?_'_(1))" NS (_17 1)7

which is a quadrature formula attributed to Bouzitat. We note that the remainder-
term R, (f) from (1) may be represented on the space C(I) as

Rn(f) = 7T27n71[91702; e ;0n+3; f]

where [01,6s, ... ,6p43] denotes the divided difference at a system of distinct points
01,02, ... ,60,43 from I (see [11]-[12]).

3. A sequence of Jackson type operators. Let w(t) = 1/v/1 —1¢2,
€ (-1,1), and L?, 1 < p < o0, be the class of measurable functions on I which
satisty || f||, < oo, where

1/p

||f||p=(/_11|f(t)lpw(t)dt> L 1<p<oo,

and ||f]|oo is the sup-norm. Further, by X we denote one of the following function
spaces: C(I) or LP.
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Also we use the following notation:

T (z) = cosm(arccos x)

* _ X 1+Tn+2( ) * _ 1 .2 T
(@) = (z —cosm/(n+2))?’ #n €M, an = (n +2) n+2
/ FO Tk (t)w(t)dt feXx, (4)
ofr, k=12,
k= (Tk) { 1/7, k=0.

Functions from X can be expanded in terms of Chebyshev polynomials. Every
f € X has the expansion

2) ~ Y wrt(HTk(x), z €, (5)
k=1

where t(f) are the Chebyshev coefficients defined as above.

In order to try to give a simple and unified approach to the theory of approx-
imation by algebraic polynomials on a compact interval, Butzer and Stens [4] have
introduced the translation operator 7., € I, defined on X by:

(o f)(t) =1/2- [f(zt + V1 — 22/1 = 82) + f(zt — /1 —22- /1 —12)], tel.

If f,g € L}, then their convolution product is defined by means of the equality

(f+ 9)(@) = / (@D Ogbult)dr

This convolution has the following properties [1]: if f,g,h € L}, then fxg € L,
and:

) frg=gxf; 1) fx(gxh)=(frg)xh; i) i(f*g)=1tx()tx(9);
iv) if feLl , geL? 1<p<oo,then fxg€ LP and ||f*g|, < fll1-]lgllp-
Taking into account that for k£ > 1

Te(xt+V1—22-/1—-12) = )+ k21— a2 - \/1 - 2T} (x
Tp(zt—V1—22-/1—12) = — k21 —22 /1 - 82T (x

it follows that (7, T%)(t) = Tk(m)Tk (t) Therefore, if f € X has the expansion (5),
then

(6)

£) ~ Y wtk () Ti(2)Ti (1), (7)
k=0

z) ~ Y witr(f)tr(9)Th(2).
k=0
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Before proving the main results we need the following simple proposition.

LEMMA 2. Let @} be defined as in (4) and p(t) = At?> + Bt + C. Then

v ™ A o 7
/1 er (pt)w(t)dt =p <cos - 2) + s e e £ (8)

Moreover )

=1
©

en(t) V2 /1 "
dt t)dt <
LVt S s

Proof. We first observe that

. 2k — )7 (n+2)/2r, k=1
o5 | cos—— ) =
nt2 0, k=23,...n,

1+(-1)" ., =
Tn+2) T 2nt2)

pn(=1) =

Now, let ¢ € IIa,42 be defined by
q(t) = 5 (Op(t) = cont™ > + Q(t), Q € Tpys.

It is easy to see that co, = 2"T1a, A, where a,, is defined as in (4). Using Lemma
1 we observe that

A T
R,(q) = —— sin? ——
n(9) nt2 "

and from (1) we have

! 27 A ., 7
/_1 q(t)w(t)dt = -y 2q(w1n) + Rn(q) = p(z1n) + ) sin” — et

If p1(t) = V1 —t, p2(t) = V1 — 2, then according to (8) we find

/ ehOw(t)dt =1, /,lsoz<t>|p1<t>|2w<t>dtZQ'Wﬁ (10)
n+1l o, @

—n+25111 n+2

Let ®,, : C(I) — R be the linear positive functional defined by

B(f) = / et f e o).

Since ®,,(eg) = 1, eo(t) = 1, we have |®,(f)|> < |®,,(f?). Therefore, we obtain
ps < ™2 n+l . o, @

T TV g () <
Sty < 2n e ST TS

®,(p1) < /2 sin?

s
< —.
n
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If 5, = tr(ph), ie. ph(z) = > p_o thowiTk(z), then from (8)

. 2n+1) o = n

T
to =1, t] =cos——, t5 = cos — .
Oon 9 In n+27 2n TL+2 TL+2 TL+2

Next we consider the kernel L,, : I x I — R, where
Ln(z,t) = > tr,wiTi(z) T (t).
k=0

Taking into account (7), we obtain Ly (z,t) = (1p¢})(t), that is L,(z,t) > 0 for
(xz,t) e I x 1.

Using the kernel we define the linear positive operators J, : C(I) — II,,
n=12,..., by

1

(Jnf)(z = (g * f)(2) = [1 Ly (z, 1) f()w(t)dt. (11)

The main result of this section is the following;:

THEOREM 1. The sequences of operators (Jp,) defined in (11) is of Jackson
type. If f € C(I), then

) |f(@) = (nh)@)| <C-w(f;An(z), =zel,

where
Ap(z)=V1—-22/n+n"2 C€ (0,1-{—71'\/54—71'2/2); (12)
11) ||f - Jnf” S Cl 'w(f; 1/(n+ 2))7 Cl € (0)8)
Proof. If

zi(t,z) = |z —te — 1 —22V1 =12, za(t,z) = |z —te+ 1 —22/1—1¢2|, (13)
then it may be proved that for (t,z) € I x I
zj(t,z) < Ap(z)Qr(t), j=1,2,

where Q,,(t) = 2nyv/1 —t +n%(1 —t) = 2np1 () + n>|p1(t)|?.
From (9)—(10) we have

kn=1+ /1 O ()Qn(Hw(t)dt < 14 7V2 4 n2 /2. (14)

On the other hand, if f € C(I), (t,x) € I x I, we have

|f(x) = (/O] £1/2-|f(2) = f(zt + V1 —2>V1—t?)|
+1/2-[f(2) = f(zt = V1—22V1 =) <1/2-w(f;21(t,2)) + 1/2 - w(f; 22(¢, 7))
S w(f; An(z)Qn(1))-
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The well-known inequality w(f; Ad) < (1 + [A])w(f;d) makes it possible to write

1f(@) = f(O)] < (1 + Qu()w(f; An(z)), (tz) €l x], (15)

Ap(z) being defined in (12). Using the commutativity of the convolution product,
for f € C(I) and z € I we have

[f(x) = (Jnf)(@)] = |f(2)(e0 * 0p)(x) = (f * p)()])
< [ 1@ - mpOlen
In this manner, from (14)-(15) we obtain

[f(@) = (Jnf)(@)] < kn - w(f; An(z) < C-w(f; An())

where C < Cp, Co = 1+ 72+ 7%/2 and ¢ € I. From w(f;A,(z))
w(f;(14+1/n)/n) < 2-wf;1/n) it follows that for every z € I : |f(z) — (Jnf)(z)]
2Cow(f;1/n). Therefore

1f = Juf | = max|£(@) = (Juf)(@)| < 2C0w(f51/n).

ININ

A sharper inequality may be obtained in the formula way: if Q,(t) = (z —t)?, then
from (8)—(11)

1
nt (1 - 222) cos® =~ ~sin?

(JaQa)(@) = 4 |2° + ~— 2(n + 2) 2(n+2)’

ie. W, = maxger |(JnQz)(x)| = Z—_T_% sin” 2 < i

It is well-known that for a positive linear operator J : C(I) — C(I), Jeg = eg, the
inequality
I = TFI < (UH W)l f35), 6> 0, feO), W=max|(JQ:)()]

d=m

(n+2)

If = Tnfll <2 w(fsm
(n+2)) <8-w(f;1/(n+2)).

is verified [5]. In our case, with we obtain

Next we investigate the local degree of approximation by means of the poly-
nomial operators J : C(I) = II,,, n = 1,2,..., where

(o) (@) = (Jnf)(2) + (1 —2)/2- [f(=1) = (Ju f)(=1)] (16)
+ (1 +2)/2-[f1) = (JnH)D)], zel,
Jp, being defined in (11).
THEOREM 2. If J% : C(I) — I, is defined as in (16), then for f € C(I)

there exists a positive constant C* such that

[f(@) = (oH) @) < CPw(f; VI=2?/n), zel, n=12,...,
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Proof. Let us denote A} (z) = V1 —22/n, (,f)(z) = f(z)
suppose that z € I = (—vV1 —n=2,v/1—n"2), ie., n=2 < AX(z
Theorem 1, for x € I we have

|f(2) = (o f)(@)] =(enf)(@) = (L= 2)/2- (enf)(=1) = (L +2)/2- (enf)(1)]
< C-w(f; An(x) + C-w(f;n™?) < Cow(f; 245 () + Co - w(f; As ().

— (Jnf)(z) and
). According to

More precisely

|f(z) = (Jnf)(@)] < 3Cow(f;A%(z) z € L. (17)
Next we suppose that A¥ (z) <n~2 ie., x € [ U I3 where

L=[-1,—V1-n"2, I;=[/1-n21]
If 21, 22 are defined as in (13), then for (z,t) € U = I3 x I we have

Zj(x)t) < A;(l‘)sn(t), J=12 (18)
where S, (t) =14+ nv1—1t2 =1+ npy(t). Indeed
2j (@, 1) < pa(@)p2(t) +[t](1 = 2) < pa(2)p2(t) + (1 —2*) < AJ(2)Sn(0).
From (9)
1
a, =1 +/ o5 (1) Sn(H)w(t)dt < 2 + .
—1
At the same time, for (z,t) € U
(e £)(#) = F(O] <1/2-w(f;21(2, 1)) +1/2 - w(f; 22(2, 1))
which together with (18) implies
(e £)(#) = F(B)] < (1 + Sn(8))w(f; AL (2)).

Likewise, for (z,t) € U

(T2 £)(#) = F(=1)| < (1 + Sn())w(f; A% (2))-
Therefore, in case x € I3,

|(Jnf)(2) = (Jn )W) = |(f * op) (@) = (f % ¢p)(1)]
1
< [1 onO|(m £) () = FD)|w(t)dt < anw(f; AL (x))

and |(Jnf)(—z) — (Jof)(—1)| < apw(f;AL(z)). In other words there exists a
C; € (0,2 + ) such that for z € I3:
|(Jnf)(x) = (Juf) )] < Crw(f; AL (2)),

(19)
|(nf)(=2) = (Jnf)(=1)] < Crw(f; A% (2)).
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Let us suppose z € I3; from (19) and Theorem 1:
|f(z) = (JpH)@)] = |[f(x) = F(V)] = [(Juf) (@) = (Juf)(1)]
+ (1 =2)/2-[(enf)(1) = (enf)(-D)]|
<w(f;1—2) + Crw(f; A (2) + (1 - 2)Cow(f;n7)
w(f;1—a®) + Crw(f; An(2) + (1 — 2*)Cow(f;n™?)
L+ Cw(f; A% (2)) + CoA (z)w(f;n72).
It is known that for 0 < §; < dy one has d1w(f;02) < 25w(f;01). If we select
81 = A (x), 0o = n~2, z € I3, then

An(@w(fin 2) < 2n 2 (f; AL (@),

<
<

In conclusion, for z € I3:

[f(@) = (o /)(@)] < (1+ Cr +2n72Co)w(f; A (2))
that is

|f(z) = GnH) @) < CTw(f;A%L(x), n=12,..., (20)
with 0 < C* < 5+ (14 2v/2)7 4+ 72. Using the second inequality from (19) it may

be shown that (20) is verified for x € I; too. Taking into account (17) we conclude
that (20) is true for all z, x € I.

THEOREM 3. Let J,, be defined as in (11) and x fized in I. Then to each
function f € C(I) corresponds a system O1,, O, O3, of distinct points from I
such that

(Jnf)(@) = f(c-cosm/(n+2)) + Vi (2)[O1n, O2n, Ozp; f] (21)
where Vy,(z) = 7"(1;_1”_22)“ sin® -2,

Proof. In [11]-12] it is proved that if (L) is a sequence of positive linear
operators defined on C(K) and Lpey = €9, Lner = agn, ex(t) = t*, then for
feC(K)and z € K:

(Lnf)(@) = flarn(@)] + [azn(2) = a1, (2)][O1n, O2n, Ozns f] (22)

where ©;, = 0, (f, ), i = 1,2, 3, are distinct points from K. In our case, taking
into account that J, T} = t},, Tk, k = 0, 1,2, one finds

aip(z)=z-t], =z -cosw/(n+2),

1 n+l  , @

azn () = e2(x) — 5(1 — to)To(x) = &* + (1 — 2352)n—+2 sin nt2

and (22) proves the theorem.
In the case when f € C(®)(I) the equality (21) makes it possible to show that
the remainder-term may be written as

f@) = (Juf)(z) = Z(n, f,z) sin® 7/2(n + 2)
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where for = fixed in [
n(l—x?)+1 7
7 =9 ! n S L 4 /) n 2_ %
(n, f, ) zf' (1n) + " f"(&2n) cos 2 i)’

&in = &n(f, x) being points from I =[-1,1].
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