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ON A FUNCTIONAL WHHICH IS QUADRATIC

ON A-ORTHOGONAL VECTORS

Hamid Drljevi�c

Abstract. Let X be a complex Hilbert space, dimX � 3 and A be a bounded selfadjoint
operator de�ned on X. We give a representation of a continuous functional H de�ned on X under
the condition that H is quadratic on A-orthogonal vectors.

In [3] a continuous functional F : X ! � is studied which is additive on
A-orthogonal vectors. Let us note that the square of functional which is additive
on A-orthogonal vectors does not have to be quadratic. The purpose of this paper
is to give a representation of the functional H : X ! � under the condition that
is quadratic on A-orthogonal vectors. In [2] a representation is given in the case
when A = I (I denotes the identical operator).

The following theorem will be proved:

Theorem 1. Let H be a continuous functional de�ned on a (real or complex)
Hilbert space X with dimX � 3. Suppose that if (x;Ay) = 0 (x; y 2 X) then

H(x+ y) +H(x� y) = 2H(x) + 2H(y); (�)

where A : X ! X is a continuous selfadjoint operator with dimA(X) 6= 1; 2; 3.
Then there is a continuous linear operator B and quasi-linear continuous operator
C and D such that

H(x) = (Bx; x) + (Cx; x) + (x;Dx) (��)

for all x 2 X.

We will use the same technique as in [2] and the proof of the theorem will be
based upon the following lemmas.

Lemma 1. Under the hypotheses of Theorem 1 there exist functionals B(x),
C(x) and D(x) (de�ned on X) satisfying (�) such that for all complex numbers �
and for all x in X:

B(�x) = j�j2B(x); C(�x) = �2C(x); D(�x) = ��2D(x)
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Moreover, H(x) = B(x) + C(x) +D(x).

Proof. We �rst show that for the functional H(x) we have H(rx) = r2H(x)
for all x 2 X , where r is a real number. It is obvious that H(0) = 0.

1Æ Let (x;Ax) = 0 for some x 2 X (x 6= 0); then, applying relatio (�), we
obtain H(2x) = 22H(x). Thus

H(3x) +H(x) = 2H(2x) + 2H(x); H(3x) = 2H(2x) +H(x)

= 2 � 22H(x) +H(x); H(3x) = 32H(x):

Similarly we obtain H(4x) = 42H(x); H(5x) = 52H(x); . . . . Suppose that
H(nx) = n2H(x) holds for a natural number n. We shall prove that H [(n+1)x] =
(n+ 1)2H(x). For this we have:

H [(n+ 1)x] +H [(n� 1)x] = 2H(nx) + 2H(x)

H [(n+ 1)x] = 2H(nx) + 2H(x)�H(n� 1)x

= 2n2H(x) + 2H(x)� (n� 1)2H(x):

H [(n+ 1)x] = [2n2 + 2� (n� 1)2]H(x); H [(n+ 1)x] = (n+ 1)2H(x):

Thus, H(nx) = n2H(x) holds for all natural n.

Similarly we obtain H(nx) = n2H(x), if n = �1;�2;�3; . . . . It also follows
easily (because of the continuity of H) that H(rx) = r2H(x) for all real r.

2Æ Let (Ax; x) 6= 0. Then there exist a y 2 X (y 6= 0) such that (x;Ay) = 0
and (Ay; y) = �(Ax; x).

(a) If (Ay; y) = (Ax; x), then the vectors nx+y and x�ny are pairwiseA-orthgonal.
According to (�) we can write

H [(nx+ y) + (x � ny)] +H [(nx+ y)� (x� ny)] = 2H(nx+ y) + 2H(x� ny); (1)

H [(n+ 1)x� (n� 1)y] +H [(n� 1)x+ (n+ 1)y] = 2H(nx+ y) + 2H(x� ny); or

H [(n+ 1)y � (n� 1)x] +H [(n� 1)y + (n+ 1)x] = 2H(ny + x) + 2H(y � nx) (2)

If we add (1) and (2) and take into consideration (�), we get

2H [(n+ 1)x] + 2H [(n� 1)y] + 2H [(n� 1)x] + 2H [(n+ 1)y]

= 4H(nx) + 4H(y) + 4H(x) + 4H(ny)

or

H [(n+ 1)x] +H [(n� 1)y] +H [(n� 1)x] +H [(n+ 1)y]

= 2H(nx) + 2H(y) + 2H(x) + 2H(ny):

Let

H(kx) +H(ky) = k2[H(x) +H(y)] (3)
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hold for all k = 0; 2; 3; . . . ; n. It is easy to prove that (3) is true for n = k + 1. In
[1] it has been proved that there exists a z 2 X such that (x;Az) = (y;Az) = 0
and (Ax; x) = (Ay; y) = (Az; z), and on the basis of (3) we can write

H(nx) +H(ny) = n2[H(x) +H(y)] (30)

H(nx) +H(nz) = n2[H(x) +H(z)] (300)

H(ny) +H(nz) = n2[H(y) +H(z)]: (3000)

Subtracting (3000) from (300), we obtain H(nx) �H(ny) = n2[H(x) �H(y)], which
together with (30) gives H(nx) = n2H(x). Due to the continuity of the functional
H , H(rx) = r2H(x) holds for all real numbers r.

(b) Let (Ay; y) = �(Ax; x). It follows that (A(x � y; x� y) = 0 and according to
1Æ we get H [n(x + y)] = n2H(x+ y), H [n(x� y)] = n2H(x � y). Besides that we
have H [n(x+ y)] +Hn(x� y)] = 2H(nx) + 2H(ny) or

n2H(x+ y) + n2H(x� y) = 2H(nx) + 2H(ny): (4)

In [1] it has been shown that there exists a z 2 X such that (Ax; z) = 0 and
(Az; z) = �(Ax; x); (Ay; z) = 0, (Ay; y) = (Az; z). On the basis of (a) we can write

n2H(y + z) + n2H(y � z) = 2H(ny) + 2H(nz) = 2n2H(y) + 2n2H(z) (5)

or
n2H(x+ z) + n2H(x� z) = 2H(nx) + 2H(nz): (6)

If we subtract (5) from (6), we get

n2H(x+ z) + n2H(x� z)� n2H(y + z)� n2H(y � z) = 2H(nx)� 2H(ny):

If we add this last relation to (4) we obtain

n2H(x+ z) + n2H(x� z)� n2H(y + z)� n2H(y � z) + n2H(x+ y)

+ n2H(x� y) = 4H(nx)

or

2n2H(x) + 2n2H(z)� 2n2H(y)� 2n2H(z) + 2n2H(x) + 2n2H(y) = 4H(nx)

or H(nx) = n2H(x). Since the functional H is continuous then H(rx) = r2H(x)
holds for all real numbers r. Therefore H(rx) = r2H(x) holds for all real numbers
r nad for each x 2 X .

Let 2B(x) = H(ix) +H(x). It is easy to see that B(x) is a continuous and
quadratic functional on A-orthogonal vectors, as well as it satis�es B(rx) = r2B(x),
that B(ix) = B(x).

1Æ Let (Ax; x) = 0 for some x 2 X . Then (A�x; i�x) = 0 (�, � real numbers).
For � = �+ i� we have

B(�x) +B(��x) = B((� + i�)x) +B((� � i�)x) = B(�x + i�x) +B(�x � i�x)

= 2B(�x) + 2B(i�x) = 2�2B(x) + 2�2B(ix)

= 2�2B(x) + 2�2B(x) = 2(�2 + �2)B(x) = 2j�j2B(x):
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Hence B(�x) +B(��x) = 2j�j2B(x).

2Æ Let (Ax; x) 6= 0. Then there exists a y 2 X such that (x;Ay) = 0 and
(Ay; y) = �(Ax; x). Let us consider the case when (a) (Ay; y) = (Ax; x). Then if
� = �+ i� (�, � real) and e1 = (x+ y)=2, e2 = (x � y) j 2i, it follows that

B(�x) +B(�y) +B(��x) +B(��y) = 2j�j2[B(x) +B(y)]:

We can select a z 2 X such that (x;Az) = 0, (y;Az) = 0 and (x;Ax) = (y;Ay) =
�(z; Az). Let us consider the case when the sign is �. By analogy with the equation
above, we can write the following.

B(�x) +B(�z) +B(��x) +B(��z) = 2j�j2[B(x) +B(z)]

B(�y) +B(�z) +B(��y) +B(��z) = 2j�j2[B(y) +B(z)]:

From the last three equalities we have B(�x) +B(��x) = 2j�j2B(x).

Let us consider the case when (b) (Ay; y) = �(Ax; x). Then (A(x � y); x �
y) = 0. On the basis of 1Æ we have

B(�(x + y)) +B(��(x+ y)) = 2j�j2B(x+ y)

B(�(x � y)) +B(��(x� y)) = 2j�j2B(x� y):

Summing these two equations we obtain

B(�(x+y))+B(�(x�y))+B(��(x+y))+B(��(x�y)) = 2j�j2(B(x+y)+B(x�y))

or
2B(�x) + 2B(�y) + 2B(��x) + 2B(��y) = 4j�j2B(x) + 4j�j2B(y)

or
B(�x) +B(�y) +B(��x) +B(��y) = 2j�j2(B(x) +B(y)): (7)

As before, there exists a z 2 X such that (Ax; z) = (Ay; z) = 0, (Ay; y) = (Az; z)
and (Az; z) = �(Ax; x). We have

B(�x) +B(�z) +B(��x) +B(��z) = 2j�j2(B(x) +B(y)) (8)

B(�y) +B(�z) +B(��y) +B(��z) = 2j�j2(B(y) +B(z)) (9)

B(�x) �B(�y) +B(��x)�B(��y) = 2j�j2B(x)� 2j�j2B(y): (10)

From (7) and (10) it follows that B(�x) + B(��x) = 2j�j2B(x). Thus from these
considerations we can conclude that for each x 2 X and each complex � we have

B(�x) +B(��x) = 2j�j2B(x) (11)

If in (11) we replace � by ei' (' real) and ix by ei'x, we obtain B(e2i'x)+B(x) =
2B(ei'x). Similarly we get B(e�2i'x) +B(x) = 2B(e�i'x). Thus we have

B(e2i'x) �B(e�2i'x) = 2[B(ei'x) �B(e�i'x)]: (12)
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For �xed x 2 X let us set

I(�) = B(�x) �B(��1x) (� = ei'): (13)

It is easy to show that I(�) = 0 for all � = ei' (' real). From this fact it follows
that B(��x) = B(�x), and from that (due to (11)) we have

B(�x) = j�j2B(x) (x 2 X and �-complex):

Let us put
2S(x) = H(ix)�H(x): (15)

The functional S(x) is continuous, quadratic on A-orthogonal vectors and quadratic
homogenous, i.e. S(rx) = r2S(x), and besides that

S(ix) = �S(x); (x 2 X): (16)

In the same way as with the functinal B(x), we obtain

S(�x) + S(��x) = (�2 + ��2)S(x) (17)

for each x in X and for each �. If in (17) we put � = � (j�j = 1, �4n 6= 1,
n = 1; 2; . . . ) and �x instead of x, we obtain

S(�2x) + S(x) = (�2 + ��2)S(x) (170)

or
�4=(�8 � 1) � [S(�2x) � ��4S(x)] = �2=(�4 � 1) � [S(�x) � �2S(x)]:

By induction we can prove

�2n=(�4n � 1) � [S(�nx)� �2nS(x)] = �2=(�4 � 1) � [S(�x)� ��2S(x)]:

If � = �n, then

�2=(�4 � 1) � [S(�x)� ��2S(x)] = �2=(�4 � 1) � [S(�x)� ��2S(x)]

or

1=(�2 � ��2) � [S(�x) � ��2S(x)] = 1=(�2 � ��2) � [S(�x) � ��2S(x)]: (1700)

In the last relation � and � are arbitrary numbers such that j�j = j�j = 1, �4 6= 1
and �4 6= 1 and (17) holds for each x in X . Since S(rx) = r2S(x), from (1700) it
follows immediately that

[S(�x) � ��2(x)]=(��2 � �2) = [S(�1x)� ��21S(x)]=(�
2
1 �

��21) (17000)

(�2 6= ��2; �21 =
��21) for all x in X .

The right-hand side of relation (17000) is constant, for any � (�2 = ��2) and if for
�xed �1 we put

C(x) = [��21S(x) � S(�1x)]=(�
2
1 �

��21)
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we obtain C(�x) = [��21S(�x)�S(�1�x)]=(�
2
1�

��21). According to (17
000) we conclude

that C(x) and C(�x) do not depend on �1, and if we put �1 = � (in the relation
for C(x)), �1 = �� (in the relation for C(�x)), we obtain C(�x) = �2C(x), for
each complex � and x in S. Let us put D(x) = �S(x) � C(x) = [S(�1x) �
�21S(x)]=(�

2
1 �

��21). Then it follows that D(�x) = ��2D(x) (x in X , � a complex
number). Since H(x) = B(x) � S(x) and �S(x) = C(x) + D(x) it follows that
H(x) = B(x) + C(x) +D(x) Q.E.D.

Lemma 2. Suppose that the functional H satis�es the conditions of THeorem
1 and that

H(�x) = j�j2H(x) (18)

for all in X and for every complex number �. Then there exists a unique continuous
linear operator B such that for all x in X

H(x) = (Bx; x): (19)

Proof. Let us put

F (x; y) = H(x+ y)�H(x� y) (x; y in X) (20)

Let further
Xy = fx j x 2 X; (Ax; y) = 0g: (21)

For a �xed y and for x in X , F (x; y) is a continuous functional (on X) and moreover
from (x;Az) = 0, x, z in X it follows that F (x + z; y) = F (x; y) + F (z; y). On
the basis of [3] there exist unique vectors ay and by in Xy and a unique complex
number �y such that

F (x; y) = 2(ay; x) + 2(x; by) + 2�y(Ax; x) (22)

for all x in Xy. Since the functional H is quadratic on A-orthogonal vectors we
have

H(x+ y) = H(x) +H(y) + (ay ; x) + (x; by) + �y(Ax; x); ((Ax; y) = 0): (23)

1Æ Let x 2 X be such that (Ax; x) = 0. Then the relation (23) has a form

H(x+ y) = H(x) +H(y) + (ay; x) + (x; by); ((Ax; y) = 0):

2Æ Let x 2 X be such that (Ax; x) 6= 0. Then due to the continuity of the
functional F we conclude that �y = 0, and relation (23) becomes

H(x+ y) = H(x) +H(y) + (ay; x) + (x; by); ((Ax; y) = 0): (230)

We can write the space X as the direct sum of orthogonal and A-orthogonal in-
variant subspaces X0, X�, X+ of the operator A, where X0 = f(2 X j Ax = 0g.
In X� it holds that (Ax; x) < 0 for x 6= 0, and in X+ it holds that (Ax; x) > 0
for x 6= 0. In each of these subspaces we can select a maximal A-orthonormal
system. Let feig be a maximal A-orthonormal system in the space X , which
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is equal to the union of these maximal A-orthonormal systems. Let us take an
arbitrary x in X ; then x =

P
1

i=1 �iei. Let us put xn =
Pn

i=1 �iei. Applying rela-
tion (230) we obtain H(xn) = H1(xn) +H2(xn) where H1(xn) =

Pn

i=1 j�ij
2H(ei);

H2(xn) =
Pn�1

k=1 [(�kak; �xk+1) + (�xk+1; �kbk)], ak = aek , bk = bek , �xk =
Pn

i=k �iei
(1; 2; . . . ; n�1). We claim that H1(xn) and H2(xn) are quadratic on vectors of the
form xn =

Pn

i=1 �iei. Let xn =
Pn

i=1 �iei, ym =
Pm

i=1 �iei (Set n = maxfn;mg).
Then1

H1(xn + ym) +H1(xn � ym) = H1(
P
(�i + �i)ei) +H1(

P
(�i � �i)ei)

=
P
(j�i + �ij

2H(ei) +
P
j�i � �ij

2H(ei) =
P
[j�i + �ij

2 + j�i � �ij
2]H(ei)

=
P
(2j�ij

2 + 2j�ij
2)H(ei) = 2

P
j�ij

2H(ei) + 2
P
j�ij

2H(ei) = 2H1(xn) + 2H1(ym):

Thus, H1(xn+ym)+H1(xn�ym) = 2H1(xn)+2H1(ym). Similarly it can be proved
that

H2(xn + ym) +H2(xn � ym) = 2H2(xn) + 2H2(ym):

Therefore for all vectors xn =
P
�iei, ym =

P
�iei,

H(xn + ym) +H(xn � ym) = 2H(xn) + 2H(ym):

Thus the functional H is quadratic on the set S = fxn j xn =
P
�iei, ei {A-

orthonormal vectorsg. Taking into consideration that the set S is everywhere X-
dense and that H is a continuous functional, the equation H(x+ y) +H(x� y) =
2H(x) + 2H(y) holds for x, y in X . Hence Lemma 2 follows from (18) and the
continuity of H . Q.E.D.

Lemma 3. If the functional H satis�es the conditions of Theorem 1 and
moreover

H(�x) = �2H(x) (or H(�x) = ��2H(x))

holds for every complex number � and all x 2 X, then

H(x+ y) +H(x� y) = 2H(x) + 2H(y) holds for all x; y 2 X:

Proof. 1Æ Let (Ax; y) = 0 for some x, y in X . Then due to the hypothesis
the statement holds.

2Æ Let (Ax; y) 6= 0 for some x, y in X2. We can suppose that (Ax; x) 6= 0.
Then there exists a z 2 X such that (Az; z) 6= 0 and (Ax; z) = 0, (Ay; z) = 0.
We can write H(x + z) + H(x � z) = 2H(x) + 2H(z), H(x + iz) + H(x � iz) =
2H(x)� 2H(z).

Thus

4H(x) = H(x+ z) +H(x� z) +H(x+ iz) +H(x� iz): (24)

1
P

means
P

n

i=1
.

2We can suppose that (Ax; x) 6= 0
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Let us select the number � such that (Ax + y); x� y) + ��(Az; z) = 0. Taking this
condition into consideration we obtain

(A(x + y + z); x� y + �z) = 0; (A(x + y � z); x� y � �z) = 0

(A(x + y + iz); x� y + �iz) = 0; (A(x + y � iz); x� y � �iz) = 0:

Applying relation (24) we get

4H(x+ y) = H(x+ y + z) +H(x+ y � z) +H(x+ y + iz) +H(x+ y � iz)

4H(x� y) = H(x� y + z) +H(x� y � z) +H(x� y + iz) +H(x� y � iz):

Now making use of the fact that the functional H is quadratic on A-orthogonal
vectors we obtain

H(x+ y) +H(x� y) = 2H(x) + 2H(y):

This holds when (A(x + y); x � y) 6= 0. If (A(x + y); x � y) = 0, the statement
obviously holds. From 1Æ and 2Æ we conclude that H(x+ y)+H(x� y) = 2H(x)+
2H(y) holds for x; y 2 X . Now, let us consider the functional H with the property
H(�x) = �2H(x). As with the proof of Lemma 2 it is also easy to show that

F (x; y) = 2(ay; x) + 2(x; by) (25)

and that F (x; y) = H(x + y) � H(x � y). Relation (25) holds for all x; y 2 X .
Besides that

F (x; y) = H(x+ y)�H(x� y) = H(y + x)�H(y � x) = F (y; x)

and

F (x1 + x2; y) = 2(ay; x1 + x2) + 2(x1 + x2; bv)

= 2(ay; x1) + 2(x1; by) + 2(ay; x2) + 2(x2; by)

= F (x1; y) + F (x2; y):

Thus

F (x1 + x2; y) = F (x1; y) + F (x2; y); F (x; y1 + y2) = F (x; y1) + F (x; y2):

It is now easy to obtain

ay1+y2 = ay1 + ay2 by1+y2 = by1 + by2 (26)

a�y = ��2=� � ay (� { complex number 6= 0)

b�y = ��b (27)

since ay = 0 for y inX . ThusH(x+y)�H(x�y) = (x; by) holds for all x; y 2 X . For
x = y, H(2x) = (x; bx) or H(x) = (x;Dx) where Dx = bx=4 and D is a quasi-linear
operator. For H(x) instead of H(�x) = �2H(x), the condition H(�x) = ��2H(x),
should be added and it is easy to show in this way that H(x) = (Cx; x), and that
C is a quasi-linear operator. Continuity of D and C is clear. So, we obtain
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Lemma 4. If the functional H satis�es the conditions of Lemma 2, there
exists a unique continuous quasi-linear operator D(C) such that

H(x) = (x;Dx); (H(x) = (Cx; x)):
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