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A FUNCTIONAL APPROACH

TO THE THEORY OF PRIME IMPLICANTS

Frank Markham Brown and Sergiu Rudeanu

Abstract. The theory of prime implicants has been developed independently to simplify
truth-functions (Quine, 1952) and to solve inferential problems in propositional logic (Blake,
1937). The object of this paper is to generalize Blake's approach, which unlike Quine's is little
known, in the setting of function theory. We begin by developing an axiomatic theory of prime
implicants within the general framework of �nite join semilattices; Blake's concepts of syllogistic
representation and canonical form are de�ned naturally within this framework. We next specialize
this axiomatic theory to simple Boolean functions (equivalently, propositional functions) to obtain
the classical theory of prime implicants. Finally, we derive the theory of prime implicants for
general Boolean functions, together with a few results speci�c to such functions.

A. Introduction. Although the algebra of logic was invented by George
Boole as a medium for deduction, systematic methods of interference are seldom ap-
plied to Boolean (i.e., propositional) problems. Such methods would appear to have
many applications, however, in switching theory, logical design, fault-diagnosis, and
other �elds in which Boolean algebra is used.

The resolution principle, formulated by Robinson [7] in 1965, enables deduc-
tion in the predicate calculus to be mechanized by means of a single rule of inference.
This principle is of course applicable to Boolean problems, inafmuch as proposition-
al logic is a subset of predicate logic. The basic approach to resolution applied in
predicate calculus { theorem-proving by refutation { has nevertitheless found little
application in switching theory and related �elds. An approach to propositional
resolution given by Archie Blake [1] seems to us, however, to be applicable in a
direct way to such problems.

Blake's dissertation, published 27 years before Robinson's paper, demonstrat-
ed that all of the consequents of a disjunctive normal form may be generated by
repeated production of the consensus (propositional resolution) of pairs of terms,
and that all of the prime implicants of the original function will be included in the
resulting formula. Blake's dissertation is remarkable not only for presenting the
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essential idea of resolution, but also for anticipating many of the techniques later
discovered by Quine [4,5,6] and others for generating prime implicants.

The objective of the large body of research inspired by Quine's work on prime
implicants has been to simplify propositional formulas; Blake, on the other hand,
sought a simple characterization of all of the consequents of the Boolean equation
f = 0, i.e., all Boolean equations g = 0 such that f = 0) g = 0. This is a central
problem in classical logic, since a collection of simultaneously-asserted propositions
may be expressed equivalently by a single Boolean equation of the form f = 0.

The theory of prime implication has thus arisen independently to serve two
quite di�erent ends, viz., formula-minimization (Quine) and propositional inference
via resolution (Blake). While Quine's approach has been the basis for extended
research, Blake's formulation remains virtually unknown.

Blake noted that the problem of �nding consequents g = 0 of the equation
f = 0 is essentially that of �nding functions g such that g � f . This problem
is solved in Blake's formulation by expressing the function f in a form he called
"syllogistic"; this form enables all included disjunctive normal expressions to be
read o� by inspection.

Among the syllogistic forms for a Boolean function f is one which Blake called
the "simpli�ed canonical form", and which we shall call the Blake canonical form
for f and denote by BCF(f). This form turns out to the disjunction of all of the
prime implicants of f .

Our object in this and future work is to clarify and extend Blake's approach to
propositional inference. In the present paper we focus on Blake's theory of prime
implicants, formulating the essentials of that theory from an entirely function-
theoretical point of view, and presenting some applications arising from that for-
mulation. We show in the process that Boolean expressions (disjunctive normal
formulas) are not essential to the theory of prime implicants.

We begin by developing an axiomatic theory of prime implicants within the
general framework of �nite join semilattices; the concepts of syllogistic representa-
tion and Blake canonical form are de�ned naturally within this framework. We next
specialize this axiomatic theory to simple Boolean functions (equivalently, proposi-
tional functions) to obtain at once the classical theory of prime implicants. Finally,
we derive the theory of prime implicants for the most general Boolean functions,
together with a few results speci�c to such functions.

B. Axiomatic Formulation. In a disjunctive representation of a Boolean
function, say

f = t1 + � � �+ tm; (1)

where t1; . . . ; tm are terms, we customarily apply associativity, commutativity and
idempotence, so that we may disregard parentheses, order of terms and possible
repetition of terms: two disjunctive representations that di�er only in these three
respects are thus identi�ed. We therefore de�ne a disjunctive representation of a
function f as a set ft1; . . . ; tmg of terms such that identity (1) holds. The elements
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of the set ft1; . . . ; tmg are functions, no matter how they are represented, while in
a disjunctive form each term t is to be represented in the canonical form. This dif-

t = x
ei1
i1
� � �x

eik
ik

: (2)

ference is immaterial, however, and (as we show) the essential of the entire theory
of prime implicants can be recaptured within the function-theoretical framework.

The function-theoretical aspect is convenient, moreover, for generalizations.
Consider, for example, the Boolean functions dealt with in the conventional the-
ory. Such functions involve variables, but not constants; they are what we have
called simple Boolean functions [8] (or, equivalently, propositional functions). The
diÆculty in obtaining a theory of prime implicants for arbitrary Boolean functions,
whose representation may involve constants as well as variables, lies in the con-
struction of a convenient concept of formal expression. This diÆculty is avoided in
the functional approach. In addition, the functional theory can be presented in the
more general setting of lattices and semilattices, as suggested by Davio, Deschamps
and Thayse [2].

Let (L; V ) be a �nite join semilattice. By a V -generating system (or simply
generating system) we mean a subset G of L such that every element of L can be
written as a join of elements from G.

Note that a generating system, e.g., L itself, always exists in the semilattice.
We work in the sequel with an arbitrary but �xed generating system G.

Remark 1. If L has a least element 0 (zero), then 0 2 G.

By an implicant of an element a 2 L we mean an element g 2 G such that
g � a; the maximal elements of the set of all implicants of a will be called prime
implicants of a.

Remark 2. For every implicant g of a there is a prime implicant p of a such
that g � p.

By a representation of an element a 2 L we mean a subset fa1; . . . ; asg of L
such that

a = a1 _ � � � _ as; (3)

for the sake of simplicity, however, we shall refer to (3) itself as a representation of a.
We nevertheless keep in mind the exact de�nition given above for a representation,
so that we will idetify every pair of representations (3) and a = a01 _ � � � _ a0t which
di�er only in the order of terms and or the number of occurrences of each term.

A representation (3) with a1; . . . ; as 2 G will be called a G-representation.

Proposition 1. [2, Theorem 1.15]. In a �nite join semilattice, every element
equals the disjunction of all its prime implicants.

Proof. Given a 2 L let fp1; . . . ; pmg be the set of all prime implicants of a.
Then pi � a (i = 1; . . . ;m) and therefore p1 _ � � � _ pm � a. To prove the converse
inequality, let a = g1_� � �_gn be a G-representation of a. In view of Remark 2, for
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every integer h 2 f1; . . . ; ng there is a prime implicant pih of a such that gh � pih .
Then

a = g1 _ � � � _ gn � pi1 _ � � � _ pin � p1 _ � � � _ pm � a;

and therefore
a = p1 _ � � � _ pm: (4)

We shall refer to the representation (4) as the Blake canonical form of a, and
write it as BCF(a). It is clear that BCF(a) is unique.

An important property of the Blake canonical form is related to the following
de�nition. Let (3) and

b = b1 _ � � � _ bt (5)

be two G-representations. Following Blake, we say that (5) is formally included in
(3), written (5)� (3) or fb1; . . . ; btg � fa1; . . . ; asg or b1_ � � � _ bt � a1 _ � � � _as,
if for every bi there is some ah such that bi � ah. It is clear that

b1 _ � � � _ bt � a1 _ � � � _ as ) b1 _ � � � _ bt � a1 _ � � � _ as:

A G-representation (3) will be called syllogistic in case

b1 _ � � � _ bt � a1 _ � � � _ as ) b1 _ � � � _ bt � a1 _ � � � _ at:

for every subset fb1; . . . ; btg � G.

Remark 3. The G-representation (3) is syllogistic if and only if

g � a1 _ � � � _ as ) g � a1 _ � � � _ as

for every element g 2 G.

Proposition 2. In a �nite join semilattice, the G-representation (3) is
syllogistic if and only if it contains all the prime implicants of a.

Proof. Let fp1; . . . ; pmg be the set of prime implicants of a. Suppose
fp1; . . . ; pmg � fa1; . . . ; asg. If g is an implicant of a, then g � pi for some
i 2 f1; . . . ;mg. But pi 2 fa1; . . . ; asg; hence g � a1 _ � � � _ as and therefore (3) is
syllogistic by Remark 3. Conversely, suppose there is some prime implicant pi of a
such that pi 62 fa1; . . . ; asg. Then (3) is not syllogistic, for (i) pi � a1_� � �_as but
(ii) not pi � a1 _ � � � _ as. To show (ii), suppose pi � ah for some h 2 f1; . . . ; sg;
then the maximality of pi implies that pi = ah, a contradiction.

Corollary. The Blake canonical form is syllogistic.

The introduction of certain supplementary hypotheses enables us to obtain
further results.

Lemma 1. [2, Theorem 1.16]. Suppose (L;_;^) is a �nite lattice and let
a1; . . . ; ak 2 L. Then every prime implicant of a1 ^ � � � ^ ak is a prime implicant
of ph1 ^ � � � ^ phk for some prime implicants phj of aj (j = 1; . . . ; k).

Proof. Let p be a prime implicant of a1 ^ � � � ^ ak. Then for every j 2
f1; . . . ; kg we have p � aj : hence p � phj for some prime implicant phj of a. It
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follows that p � ph1 ^ � � � ^ phk and if g 2 G ful�lls p � g � ph1 ^ � � � ^ phk then
p � g � a1 ^ � � � ^ ak; thus p = g by the maximality of p. Therefore p is a prime
implicant of ph1 ^ � � � ^ phk .

Proposition 3. Suppose (L;_;^) is a �nite lattice and the meet of every
pair of elements of G is in G. For any elements a1; . . . ; ak 2 L, every prime
implicant of a1 ^ � � � ^ ah is of the form ph1 ^ � � � ^ phk for some prime implicants
phj of aj (j = 1; . . . ; k).

Proof. Lemma 1 yields p � ph1 ^ � � � ^ phk � a1 ^ � � � ^ ak. By hypothesis,
however, ph1 ^ � � � ^ phk 2 G; therefore, by the maximality of p, p = ph1 ^ � � � ^ phk .

Suppose further that L is �nite distributive lattice. For each k � 2 and for
every system

aj = aj1 _ aj2 _ � � � _ ajn(j) (j = 1; . . . ; k); (6.j)

of k representations, de�ne (6.1) � (6.2) � . . . � (6.k) to be the representation of
a1 ^ � � � ^ ak obtained by multiplying out the k representations (6.1), . . . , (6.k). In
the other words,

a1 ^ � � � ^ ak = _'a1'(1) ^ � � � ^ ak'(k); (6:1)� . . .� (6:k)

where ' runs over the set of all functions

' : f1; . . . ; kg ! [kj=1f1; . . . ; n(j)g (7)

having the property

'(j) 2 f1; . . . ; n(j)g (j = 1; . . . ; k): (8)

Proposition 4. Suppose (L;_;^) is a �nite distributive lattice and the meet
of every pair of elements of G is in G. For every k � 2 and every a1; . . . ; ak 2 L,
if (6:1); . . . ; (6:k) are syllogistic G-representations of a1; . . . ; ak, respectively, then
(6:1)� . . .� (6:k) is a syllogistic G-representation of a1 ^ � � � ^ ak.

Proof. In view of Proposition 2, it suÆces to prove that every prime implicant
of a1 ^ � � � ^ ak is a term of the representation (6:1) � � � � � (6:k). According to
Proposition 3, p is of the form p = ph1 ^ � � � ^ phk , for some prime implicants phj
of aj (j = 1; . . . ; k). But each phj belongs to the syllogistic representation (6:j)
j = (1; . . . ; k); therefore p does occur in the representation (6:1)� � � � � (6:k).

Corollary. BCF (a1) � � � � � BCF (ak) is a syllogistic representation of
a1 ^ � � � ^ ak.

C. Specialization to the Classical Theory. The classical theory of prime
implicants refers to truth functions, i.e., functions with arguments and values in
the two-element Boolean algebra. However, in view of the isomorphism between
truth functions and simple Boolean functions over an arbitrary Boolean algebra [8,
Corollary to Theorem 1.21], the theory applies exactly as it stands to the latter
functions. We wish now to obtain this theory as a particular case of the axiomatics
described above; then, for the sake of completeness and in view of applications
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to be described in subsequent work, we prove a few well-known results speci�c to
prime implicants of simple Boolean functions.

Let (B, +, �, 0, 0, 1) be a Boolean algebra and n a positive integer, both of
them arbitrary but �xed in the sequel. We recall that a map f : Bn ! B is termed
a simple Boolean function if it can be obtained from variables by super-positions
of the basic operations +, �, 0.

We take as lattice (L, +, �) the set of 22
n

simple Boolean functions f : Bn !
B, endowed with the operations +, � and partial order � de�ned pointwise from the
corresponding operations +, � and partial order � of B. The set of terms consists
of the constant function 1 and all the functions t : Bn ! B that can be written in
the form

t(x1; . . . ; xn) = xei1i1
� � �xeikik

x1; . . . ; xn 2 B;

where the indices i1; . . . ; ik are distinct members of f1; . . . ; ng, ei1 ; . . . ; eik 2 f0; 1g,
and xe means x or x0 according as e = 1 or e = 0. Note that the expression (9) is
unique up to the order of enumeration of indices. The generating system G consists
of all the terms plus the constatant function 0 (cf. Remark 1).

To establish the junction with the classical theory, let us �rst mention:

Proposition 5. Let t = x
eh1
h1

� � �x
ehj
hj

and � = x
di1
i1
� � �x

dik
ik

be representations

of the terms t and � in the form (9) described above. Then t � � if and only if
fi1; . . . ; ikg � fh1; . . . ; hjg and eir = dir (r = 1; . . . ; k).

In other words, t � � if and only if every literal x
dir
ir

of � iv in t. ir

Proof. Well-known.

We see therefore that the operations +, � and the order � dealt with in the
classical theory of Boolean prime implicants coincide with those obtained by spe-
cializing the general concepts of the axiomatic approach described in Section B.
As we have remarked in the introduction, the classical concept of disjunctive form
is slightly stronger than the specialization of the concept of G-representation: the
terms have to be written in the standard form (9) and the constant function 0 2 G

is always omitted from a disjunctive form of a function f 6= 0. The results of the ax-
iomatic theory which involve the concept of G-representation however, are Remark
3, Propositions 2,4 and their corollaries, which refer to syllogistic representations
and Blake cannonical forms (these two concepts disregard the "internal representa-
tion" of G-elements). Thus each of the properties mentioned above remains valid
when G-representations are replaced by disjunctive forms, in view of the following
scheme: the (syllogistic, Blake) disjunctive forms given in the hypothesis are (syllo-
gistic, Blake) G-representations, and from the (syllogistic, Blake) G-representations
obtained in the conclusion we obtain immediately (syllogistic, Blake) disjunctive
forms, as desired.

The next two propositions are speci�c to the theory of prime implicants of
simple Boolean functions and make use of the following concept. Two terms s and
t are said to have an opposition provided there is a variable xi (more rigorously, a
projection-function) such that either (i) s � x0i and t � x0i or (ii) s � x0i and t � xi.
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This happens if and only if the letter xi appears uncomplemented in the standard
form (9) of one of the terms and complemented in the corresponding form of the
other term. Two terms may have several oppositions, a single opposition, or none.

Proposition 6. [1, Corollary to Theorem 10.3]. Let r and s be terms having
exactly one opposition, say r = xr1 and s = x0s1 where the terms r1 and s1 are
independent of x and have no opposition. Then

r + s+ r1s1 (10)

is a syllogistic representation of r + s.

Proof. Take a = b = 1 in Proposition 10 below.

Proposition 7. Let f be exprersed by

f = t1 + � � �+ tm; (1)

where t1; . . . ; tm are terms such that for every pair tj1 , tj2 there is no opposition.
Then (1) is syllogistic.

Proof. Let p = x
eh1
h1

� � � p
ehk
hk

be a prime implicant of f . Suppose �rst that

every term tj contains a literal x
ei(f)

i(j) not in p. De�ne x�hr = ehr (r = 1; � � � ; k),

x�
i(j) = ei(j)�1 (j = 1; . . . ;m) (where x�y = x0y+xy0), which is possible because

fh1; . . . ; hkg \ fi(1); . . . ; i(m)g = ; and i(j1) = i(j2) ) ei(j1) = ei(j2) for all j1,
j2 2 f1; . . . ;mg. Take x� 2 Bn de�ned as above in the components, if any. Then
p(x�) = 1 and evry tj(x

�) = 0 (j = 1; . . . ;m), which contradicts p � f . Hence
there exists a term tj0 such that all its literals are in p, and therefore p � tj0 by
Proposition 5; but tj0 � f , and therefore p = tj0 by the minimality of p.

We conclude this section with

Remark 4. ([Kuntzmann [3, IV. 13]). The converse of Proposition 3 is not
valid, as shown by the following example. Let BCF (f1) = xy + xz + yz0 and
BCF (f2) = xy+xz0+yz. Then BCF (f1f2) = BCF (xy+xyz+xyz0) = xy, while,
for example, (xy)(yz) = xyz.

D. Extension to Arbitrary Boolean Functions. We seek now to extend
the theory of prime implicants from simple Boolean functions to arbitrary Boolean
functions. We recall that a map f : Bn ! B is said to be a Boolean function if it can
be obtained from constants and variables by superposition of the basic operations
+, �, 0. An equivalent de�nition is that Boolean functions are those functions
that can be obtained from simple Boolean functions by �xing the values of some
(possibly none) of their variables. See [8] for a detailed study of the distinction
between Boolean functions and simple Boolean functions.

The Boolean algebra B will henceforth be supposed to be �nite. This hy-
pothesis is not overly restrictive, because in practice we work in most cases with
a �nite number of Boolean functions, each of which is expressed using a �nite
number of constants. We can therefore replace the original Boolean algebra by
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the Boolean subalgebra generated by all these (�nitely many) constants; hence the
latter subalgebra is �nite.

To apply the axiomatic theory, we take as lattice (L, +, �) the set of Boolean
functions f : Bn ! B, endowed with the operations +, � and the partial order �
de�ned pointwise from the corresponding operations +, � and partial order � of
B. We take as generating system G the set of all generalized terms or genterms,
i.e., the set of all functions that can be written in the form at, where a 2 B and
t : Bn ! B is a term in the previous sense of de�nition (9). Clearly (L, +, �) is a
�nite distributive lattice, the genterms form a generating system, and the meet of
two genterms is always a genterm. The axiomatic theory therefore applies to this
case.

In the remainder of this paper we give a necessary condition for a genterm
to be a prime implicant of a Boolean function (Proposition 8) and prove that our
concept of prime implicant reduces to the customry one in the case of a simple
Boolean function (Proposition 9). We also generalize Proposition 6 to the case of
arbitrary Boolean functions (Proposition 10) and show that such generalization is
not possible for Proposition 7; cf. Remark 5.

Lemma 5. For all genterms as, bt,

as � bt, [a � b and s � t] or [a = 0]: (11)

Proof. Suppose as � bt and a 6= 0. Then as � b and, taking x 2 Bn such
that s(x) = 1, we obtain a � b. Now suppose, by way of contradiction, that not
s � t. Then s(x�) = 1 and t(x�) = 0 for some x� 2 Bn, which contradicts as � bt.
The converse is trivial.

Corollary. For all genterms as, bit,

as = bt, [a = b and s � t] or [a = 0]: (12)

Proposition 8. If cp is a prime implicant of a Boolean function, where
c 2 B and p is a term, then

c =
Q

i[f(i) + p0(i)] 2 f(Bn); (13)

where i runs over f0; 1gn.

Proof. According to a theorem of Whitehead [9] (see also [8, Theorem 2.5]),

ff(x) j x 2 p�1(1)g = [a; b] = fy 2 B j a � y � bg (14)

where
a =
Q

i[f(i) + p0(i)] and b =
P

if(i)p(i): (15)

Thus [a; b] � f(Bn) and we will prove that c = a. Note that ap is an
implicant of f , because if x 2 p�1(0) then ap(x) = 0, while if x 2 p�1(1) then
ap(x) = a � f(x). Now take x� 2 p�1(1) such that f(x�) = a. Thus c � a, and in
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fact c = a; otherwise c < a and therefore cp(x) < ap(x) for x 2 p�1(1) and, since
cp � ap, it follows that cp � ap, which contradicts the maximality of cp.

Proposition 9. Let f be a simple non-zero Boolean function. Then the
prime implicants of f obtained within the genterms are the same as the prime
implicants of f in the customary sense.

Proof. Let p be a prime implicant of f in the customary sense. In view of
Remark 2, p � cq for some genterm cq that is a prime implicant of f . But Lemma
2 implies that c = 1 and p � q; hence p = q by the maximality of p within term-
implicants. Thus p = cq is a prime implicant in the sense of genterms. Conversely,
let cp be a prime implicant of f , where c ful�lls condition (13) in Proposition
8. It follows from [8], Theorem 1.7, that f(i); p(i) 2 f0; 1g for all i 2 f0; 1gn;
hence c 2 f0; 1g by (13). But c 6= 0 because 0 is not a prime implicant of the
nonzero function f . Hence c = 1, and therefore cp = p is a prime implicant in the
conventional sense.

Proposition 10. Let r and s be genterms having exactly one opposition,
say r = axr1 and s = bx0s1, where a; b 2 B and r1, s1 are term independent of the
variable x and having no opposition. Then

r + s = r + s+ abr1s1 (16)

is a syllogistic representation.

Proof. Inafmuch as

r + s+ abr1s1 = axr1 + bx0s1 + (x+ x0)abr1s1

= axr1 + bx0s1 = r + s;

we see that (16) holds. Further, let cp be a primer implicant of r+s; we must show
that cp 2 fr; s; abr1s1g. If p = xp1, where p1, is a term independent of x, then
multiplying

cp � r + s = axr1 + bx0s1 (17)

by x we obtain cp = cxp1 � axr1 = r � r + s; therefore cp = axr1 = r by the
maximality of cp. If p = x0p1, one proves similarly that cp = s. If p is independent
of x, then taking in turn x = 1 and x = 0 in (17), we obtain cp � ar1 and cp � bs1;
hence cp � abr1s1. But it follows from (16) that abr1s1 � r + s, and therefore
cp = abr1s1 by the maximality of cp.

Remark 5. Proposition 7 cannot be extended to genterms. Take two elements
a; b 2 B n f0; 1g such that a + b = 1, for example, and notice that xy is a prime
implicant of f(x; y) = ax+ by.

We conclude with two results that will be useful in extensions of the present
work.

Lemma 3. If a prime implicant p of a Boolean function f : Bn ! B depends
actually on a variable xi(� i � n), then so does f .
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Proof. Let p = ap1, where a 2 B and p1 is a term. Then the standard form
(9) of p1 contains the literal xeii with ei 2 f0; 1g. Taking all literals of p1 equal to
1 makes f(x) � a and there is a point y 2 Bn for which yeii = 0, the other literals
of p1 are equal to 1, and f(y) 6� a, otherwise dropping xeii from p1 would result
in a new implicant, q, of f with p < q, which is a contradiction. Thus f depends
actually on xi.

Lemma 4. Let t and � be genterms with 0 6= t � �. If t is independent of a
variable x, then so is �.

Proof. Let t = at1, � = b�1 and write the terms t1 and �1 in the standard
form (9). Then t1 � �1 by Lemma 2 and it follows from Proposition 5 that �1 is
independent of x.
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