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A GENERALIZATION OF EQUIVALENCE RELATIONS

Marica D. Presié

Abstract. A many sorted generalization, called case relation, of the notion of equ’valence
relation is given. Some fundamental properties of the case relations are proved, such as: some set
theoretical characterizations and a formula which describes all case relations of the given sets.

By the set-theoretical interpretation of natural languages with highly devel-
oped inflection introduced in [2], the verbs have been interpreted as many-sorted
relations of the given domains. Namely, if D is an interpretation, o a verb hav-
ing the mark (ki, k2, ... ,kyn), i € D, then the meaning m(i)(a) of the verb « at
the index i has been defined as an n-ary relation of the sets Dy, , Dgy,... , Dg,
i.e. as a subset of Dg, X Dy, X -+ x Dy, . In what follows for these relations we
use the name case relations. Case relations have various properties which resemble
the well-known properties of the corresponding one-sorted relations. For example,
consider the predicate

(1) is similar

(in Serbocroatian: je sli¢an, in German: ist danlich).

In most inflective languages (1) has the mark (1,3), which means that it is
applicable to an ordered pair of nouns wich are in nominative and dative respective-
ly. Thus, in the interpretation D the corresponding case relation for each chosen
i € Dy is a subset of D; x D3. Denote this relation by ~. On the basis of the usual
properies of (1) it follows immediately that ~ satisfies:

(R13) 561 ~ .773
(S13) z~yi=yl~z
(T1s) r~P Ayt~ st~z

3

’ (xl)ylazl €D1,:L“3,y3,z3€D3).

Obviously, (R13), (S13), (T13) are generalizations of reflexivity, symmetry and tran-
sitivity. For that reason we call the relation ~ having the properties (R;3), (Si3),
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(T3), or more generally the properties:

(Rij) @' ~a?

(Sij)

ij) e~y Ny ' ~ 2 =t~ («*,y", 2" € Dy, o’ ¢, 27 € Djy).

.’IZiNyj:>yiN.Tj

a case equivalence relation or more precisely an (i, j)-case equivalence relation. Sim-
ilarly, the notion of an order relation can be generalized to the notion of a case order
relation.

o

In the sequel we develop a small theory of (f, g)-equivalence relations which
comprehends the notion of case equivalence relations.

Definition 1. Let A, B be nonempty sets, f : A — B a one-to-many' mapping
from A to B, g : B — A a one-to-many mapping from B to A and ~ C A x B a
binary case relation. We say that ~ is an (f, g)-equivalence relation iff:

(i) Both f, g are onto:
1) (Vy € B)(3z € A)y = f(x)
2 (Vo € A)(Jy € B)z = g(y);

ii) ~ does not discern f and g, i.e. for each f(y):, g(z);

(0
(0
( A

(ng) z~ fly &z~ f(y)s, (z,y € )
g(x1) ~y & g(x) ~y (z,y € B);

ii) f, g are ~-inverse to each other:
It w~yegf@)~y, z~ysz~flgly) (z€AyeB)

z~ f(z), g(y) ~y
ng) z~y e gly) ~ fz)

(i

(

(iv) ~ is (f, g)-reflexive (f, g)-symmetric and (f, g)-transitive:

(By

(

(Tt r~yAgly)~z&x~z, forall z€ A yeB.

For example, let A= {al,b1,cl,d1,€1}, B = {CLQ,bQ,CQ}, f = {(al,ag),(bl,bQ),
(c1,a2),(di,c2), (e1,¢2)}; 9 = {(az,a1), (az,b1), (b2,b1), (b2,c1), (c2,d1), (c2,€1)}
and let ~ = {(a1,a2), (a1,b2), (b1, a2), (b1, b2), (c1,a2), (c1,b2), (d1,c2), (e1,ca)}. Tt
is not difficult to verify that ~ is an (f, g)-equivalence relation.

In the case A = B and f, g are identity mappings of A, Definition 1 reduces
to the definition of an equivalence relation of A. If f is a one-to-one mapping wich
is 1 - 1 and onto, and g is f~!, the conditions for an (f, f~!)-equivalence relation
read:

z~ fz), [7Hy) ~ v,
z~y = fHy) ~ fo),
T~y AN y) ~z =~ 2.

li.e. f is a subset of A x B having the property: (Vz € A)(Jy € B)(z,y) € f. By
f(z), f(z)o, f(z)1,... we denote different images of z € A by the mapping f.
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Especially, if A = D;, B = D; and f maps ' to 2/ the definition of an (f, f!)-
equivalence relation reduces to the definition of the (i, j)-case equivalence relation.

The following theorem is an immediate consequence of Definition 1.

THEOREM 1. The (f,g)-equivalence relation ~ has the following properties:

w

r~yAT~z=g(y) ~ 2.
r~y& (VzeB)(z~zeg(y)~2),
r~yAz~y =z~ f(x),

W

N N N SN S
(=2 N
~— O~ S~

r~yAzn~ flx)=z~y,
r~ye Vze d)(z~y &z~ f(x)).

~J

Starting from the (f, g)-equivalence relation ~, we define two binary relations
~ 4, ~p, of the sets A, B respectively.

Definition 2. z~ay <z~ f(y), (z,y€A)
z~py e g(@) ~y, (z,y€B).
In virtue of (Dyg), it follows that ~4, ~p do not depend on the choice of

f (), g(x), and therefore the definitions are correct. The properties of ~4, ~p are
summarized in the following theorem.

THEOREM 2. (i) ~a, ~p are equivalence relations of the sets A, B respec-
tively.

(i9) Neiher ~4 discerns g nor ~p discerns f, i.e.

f@)1 ~B f(2)2, 9W)1 ~a g(y)2, for all f(z)i, g(y)i, z € A, y € B.

(i) z~ag(f(x), y~p flgy) foral zeA, yeB.
(iv) ~a, ~p are compatible with f, g respectively, i.e.

z~ay= @) ~p fly), (z,y€A)

z~py=g() ~agly), (vyeB).

Proof. Part (i) follows by (Ry,q), (St,), (If,9), and by part (5) of Theorem
1. (i) follows by (Dy4) and (é5) by (Ir,). The proof of the first implication in
(iv) reads
z~ay =z~ fy) = 9(f@) ~ f(z) = f(z) ~p fy).

We can prove similarly the second implication.

Using (Iy,,) it follows immediately that the implications in part (iv) may be
replaced by equivalences.

THEOREM 3.
r~ay e f(@)~p fly) (z,y€A)
z~py e glr)~agly) (z,y€B)

(8)
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An immediate consequence of the preceding theorems is the following;:

THEOREM 4.

f@)) ~p={f(u)[uecA, v~au}

9(y)) ~a={g(v) |v € B, y ~p v} (r € A, y € B).

Starting from f, g we define in the natural way the mappings (one-to-one)
F:P(A) - P(B),G:P(B) = P(A).
Definition 3. F(S)={f(z) |z € S} (SCA),
G(T)={g9(y)lyeT} (TCB).
THEOREM 5. The mappings F', G have the following properties:
(i) F(z/ ~a) = f(x)] ~B, Gly/ ~a) =g(y)/ ~a,
(i) F, G are both 1 - 1 and onto.
(iii) F, G are inverse to each other.
Proof. (i) has been proved in the preceding theorem; (i) follows by Theorem
3 and the assumption that f, g are onto; (74) follows by Theorem 2, part (4ii).

In the theorems which follow we prove that the properties (i) - (iv) of ~4,
~p proved in Theorem 2 and the properties (i) - (i) of F', G proved in Theorem 5
are characteristic in the sense that any (f, g)-equivalence relation ~ can be defined
in terms of two equivalence relations of the sets A, B.

THEOREM 6. Let A, B be non-empty sets, f : A — B, g: B — A one-to-
many mappings which are onto. Let further ~ 4, ~p be binary relations of A, B
respectively having the properties:

(i) ~a, g are equivalence relations,
(i) ~a, ~p do not discern f, g respectively,
(i) © =4 g(f(2), y =B f(9(y))), for all f(z) € B, g(y) €A,z € A, y€B
(iv) =4, ~p are compatible with f, g respectively.
Then any (f,g)-equivalence relation ~ can be defined so that the corresponding

relations ~ 4, ~p are just X4, Np.

Proof. The relation ~ having the required properties is defined by:

T~y ST g(y).

THEOREM 7. Let f, g be one-to-many mappings of A onto B and B onto
A respectively, and let ~4, ~p be equivalence relations of the sets A and B. Fur-
thermore, suppose that F', G are the mappings introduced by Definition 1. If F, G
have the properties:

(i) F(z/ ~a) = f(z)/ =B, G(y/ ~B) = g(y)/ =a (¢ €A, y€B),
(i) F, G are both 1 - 1 and onto,

(i) F, G are inverse to each other,
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then an (f, g)-equivalence relation ~ can be defined so that the corresponding rela-
tions ~4, ~p are just X4, NpB.

The proof follows immediately by Theorems 4 and 6.

Using the preceding results and the results of [1], it follows that all (f,g)-

equivalence relations can be determined by the reproductive formulae given in the
next theorem.

THEOREM 8. Let f: A — B, g: B — A be one-to-many mappings which
both are onto and m-inverse to each other, where 1 C A X B is a binary relation
not discerning f and g. Then the relation ~ defined by any of the formulae.

(9) r~ys (V2 € A)zny & 2 f(x))
(10) x~ys (Vz € B)anz & gly)rz)

is an (f, g)-equivalence relation, and all (f, g)-equivalence relations can be obtained
by any of the preceding formulae.

Proof. If part: Let ~ be defined by (9). It suffices to prove that ~ is (f, g)-
reflexive, -symmetric and -transitive. Reflexivity follows immediately. Suppose
x ~y,ie (Vz € A)(zrmy & zrnf(x)). As we have sty < z7f(g(y)), we conclude
(Vz € A)(2mf(9(y)) & znf(z)), wherefrom (Vz € A)(znf(z) & 2w f(g(y))), which,
by definition (9), means g(y) ~ f(z), i.e. ~ is (f,g)-symmetric. The proof of
transitivity is, for example:

x~yAgly) ~z=> Vu € A)(ury & urf(z)) A (Yu € A)(urz < unf(g(y)))
= (Vu € A)(ury & urf(z)) A (Vu € A)(urz & uny)
= (Vu € A)(urz & unf(z))

=T~z

The proof of the if part is similar in the case ~ is defined by (10). Only
if part: By Theorem 1 parts (4) and (7), it follows immediately that each of the
formulae (9), (10), is reproductive, i.e. if ~ is any (f, g)-equivalence relation, it can
be obtained by (9), as well as by (10), by choosing for 7 just the relation ~.
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