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A GENERALIZATION OF EQUIVALENCE RELATIONS

Marica D. Pre�si�c

Abstract. A many sorted generalization, called case relation, of the notion of equ'valence
relation is given. Some fundamental properties of the case relations are proved, such as: some set
theoretical characterizations and a formula which describes all case relations of the given sets.

By the set-theoretical interpretation of natural languages with highly devel-
oped inection introduced in [2], the verbs have been interpreted as many-sorted
relations of the given domains. Namely, if D is an interpretation, � a verb hav-
ing the mark hk1; k2; . . . ; kni, i 2 Ds, then the meaning m(i)(�) of the verb � at
the index i has been de�ned as an n-ary relation of the sets Dk1 ; Dk2 ; . . . ; Dkn

i.e. as a subset of Dk1 �Dk2 � � � � � Dkn . In what follows for these relations we
use the name case relations. Case relations have various properties which resemble
the well-known properties of the corresponding one-sorted relations. For example,
consider the predicate

(1) is similar

(in Serbocroatian: je sli�can, in German: ist �anlich).

In most inective languages (1) has the mark h1; 3i, which means that it is
applicable to an ordered pair of nouns wich are in nominative and dative respective-
ly. Thus, in the interpretation D the corresponding case relation for each chosen
i 2 Ds is a subset of D1�D3. Denote this relation by �. On the basis of the usual
properies of (1) it follows immediately that � satis�es:

x1 � x3(R13)

x1 � y3 ) y1 � x3(S13)

x1 � y3 ^ y1 � z3 ) x1 � z3 (x1; y1; z1 2 D1; x
3; y3; z3 2 D3):(T13)

Obviously, (R13), (S13), (T13) are generalizations of reexivity, symmetry and tran-
sitivity. For that reason we call the relation � having the properties (R13), (S13),
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(T13), or more generally the properties:

xi � xj(Rij)

xi � yj ) yi � xj(Sij)

xi � yj ^ yi � zj ) xi � zj (xi; yi; zi 2 Di; x
j ; yj ; zj 2 Dj):(Tij)

a case equivalence relation or more precisely an (i; j)-case equivalence relation. Sim-
ilarly, the notion of an order relation can be generalized to the notion of a case order

relation.

In the sequel we develop a small theory of (f; g)-equivalence relations which
comprehends the notion of case equivalence relations.

De�nition 1. Let A, B be nonempty sets, f : A! B a one-to-many1 mapping
from A to B, g : B ! A a one-to-many mapping from B to A and � � A � B a
binary case relation. We say that � is an (f; g)-equivalence relation i�:

(i) Both f , g are onto:
(8y 2 B)(9x 2 A)y = f(x)(0f )

(8x 2 A)(9y 2 B)x = g(y);(0g)

(ii) � does not discern f and g, i.e. for each f(y)i, g(x)i

(Df;g)
x � f(y)1 , x � f(y)2; (x; y 2 A)

g(x1) � y , g(x)2 � y (x; y 2 B);

(iii) f , g are �-inverse to each other:
(If;g) x � y , g(f(x)) � y; x � y , x � f(g(y)) (x 2 A; y 2 B);

(iv) � is (f; g)-reexive (f; g)-symmetric and (f; g)-transitive:
x � f(x); g(y) � y(Rf;g)

x � y , g(y) � f(x)(Sf;g)

x � y ^ g(y) � z , x � z; for all x 2 A; y 2 B:(Tf;g)

For example, let A = fa1; b1; c1; d1; e1g, B = fa2; b2; c2g, f = f(a1; a2); (b1; b2),
(c1; a2); (d1; c2); (e1; c2)g; g = f(a2; a1); (a2; b1); (b2; b1); (b2; c1); (c2; d1); (c2; e1)g
and let � = f(a1; a2); (a1; b2); (b1; a2); (b1; b2); (c1; a2); (c1; b2); (d1; c2); (e1; c2)g. It
is not diÆcult to verify that � is an (f; g)-equivalence relation.

In the case A = B and f , g are identity mappings of A, De�nition 1 reduces
to the de�nition of an equivalence relation of A. If f is a one-to-one mapping wich
is 1 - 1 and onto, and g is f�1, the conditions for an (f; f�1)-equivalence relation
read:

x � f(x); f�1(y) � y;

x � y ) f�1(y) � f(x);

x � y ^ f�1(y) � z ) x � z:

1i.e. f is a subset of A � B having the property: (8x 2 A)(9y 2 B)(x; y) 2 f . By
f(x); f(x)0; f(x)1; . . . we denote di�erent images of x 2 A by the mapping f .
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Especially, if A = Di, B = Dj and f maps xi to xj the de�nition of an (f; f�1)-
equivalence relation reduces to the de�nition of the (i; j)-case equivalence relation.

The following theorem is an immediate consequence of De�nition 1.

Theorem 1. The (f; g)-equivalence relation � has the following properties:

x � y ^ x � z ) g(y) � z:(3)

x � y , (8z 2 B)(x � z , g(y) � z);(4)

x � y ^ z � y ) z � f(x);(5)

x � y ^ z � f(x)) z � y;(6)

x � y , (8z 2 A)(z � y , z � f(x)):(7)

Starting from the (f; g)-equivalence relation �, we de�ne two binary relations
�A, �B , of the sets A, B respectively.

De�nition 2. x �A y , x � f(y), (x; y 2 A)

x �B y , g(x) � y, (x; y 2 B).

In virtue of (Df;g), it follows that �A, �B do not depend on the choice of
f(y), g(x), and therefore the de�nitions are correct. The properties of �A, �B are
summarized in the following theorem.

Theorem 2. (i) �A, �B are equivalence relations of the sets A, B respec-

tively.

(ii) Neiher �A discerns g nor �B discerns f , i.e.

f(x)1 �B f(x)2; g(y)1 �A g(y)2; for all f(x)i; g(y)i; x 2 A; y 2 B:

(iii) x �A g(f(x)); y �B f(g(y)) for all x 2 A, y 2 B.

(iv) �A, �B are compatible with f , g respectively, i.e.

x �A y ) f(x) �B f(y); (x; y 2 A)

x �B y ) g(x) �A g(y); (x; y 2 B):

Proof. Part (i) follows by (Rf;g), (Sf;g), (If;g), and by part (5) of Theorem
1. (ii) follows by (Df;g) and (iii) by (If;g). The proof of the �rst implication in
(iv) reads

x �A y ) x � f(y)) g(f(y)) � f(x)) f(x) �B f(y):

We can prove similarly the second implication.

Using (If;g) it follows immediately that the implications in part (iv) may be
replaced by equivalences.

Theorem 3.

(8)
x �A y , f(x) �B f(y) (x; y 2 A)

x �B y , g(x) �A g(y) (x; y 2 B)
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An immediate consequence of the preceding theorems is the following:

Theorem 4.
f(x)= �B = ff(u) j u 2 A; x �A ug

g(y)= �A = fg(�) j � 2 B; y �B �g
(x 2 A; y 2 B):

Starting from f , g we de�ne in the natural way the mappings (one-to-one)
F : P(A)! P(B), G : P(B)! P(A).

De�nition 3. F (S) = ff(x) j x 2 Sg (S � A),

G(T ) = fg(y) j y 2 Tg (T � B).

Theorem 5. The mappings F , G have the following properties:

(i) F (x= �A) = f(x)= �B ; G(y= �A) = g(y)= �A,

(ii) F , G are both 1 - 1 and onto.

(iii) F , G are inverse to each other.

Proof. (i) has been proved in the preceding theorem; (ii) follows by Theorem
3 and the assumption that f , g are onto; (iii) follows by Theorem 2, part (iii).

In the theorems which follow we prove that the properties (i) - (iv) of �A,
�B proved in Theorem 2 and the properties (i) - (iii) of F , G proved in Theorem 5
are characteristic in the sense that any (f; g)-equivalence relation � can be de�ned
in terms of two equivalence relations of the sets A, B.

Theorem 6. Let A, B be non-empty sets, f : A ! B, g : B ! A one-to-

many mappings which are onto. Let further �A, �B be binary relations of A, B
respectively having the properties:

(i) �A, �B are equivalence relations,

(ii) �A, �B do not discern f , g respectively,

(iii) x �A g(f(x); y �B f(g(y))), for all f(x) 2 B, g(y) 2 A, x 2 A, y 2 B

(iv) �A, �B are compatible with f , g respectively.

Then any (f; g)-equivalence relation � can be de�ned so that the corresponding

relations �A, �B are just �A, �B.

Proof. The relation � having the required properties is de�ned by:

x � y , x �A g(y):

Theorem 7. Let f , g be one-to-many mappings of A onto B and B onto

A respectively, and let �A, �B be equivalence relations of the sets A and B. Fur-

thermore, suppose that F , G are the mappings introduced by De�nition 1. If F , G
have the properties:

(i) F (x= �A) = f(x)= �B, G(y= �B) = g(y)= �A (x 2 A; y 2 B),

(ii) F , G are both 1 - 1 and onto,

(iii) F , G are inverse to each other,
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then an (f; g)-equivalence relation � can be de�ned so that the corresponding rela-

tions �A, �B are just �A, �B.

The proof follows immediately by Theorems 4 and 6.

Using the preceding results and the results of [1], it follows that all (f; g)-
equivalence relations can be determined by the reproductive formulae given in the
next theorem.

Theorem 8. Let f : A ! B, g : B ! A be one-to-many mappings which

both are onto and �-inverse to each other, where � � A � B is a binary relation

not discerning f and g. Then the relation � de�ned by any of the formulae.

x � y , (8z 2 A)(z�y , z�f(x))(9)

x � y , (8z 2 B)(x�z , g(y)�z)(10)

is an (f; g)-equivalence relation, and all (f; g)-equivalence relations can be obtained

by any of the preceding formulae.

Proof. If part: Let � be de�ned by (9). It suÆces to prove that � is (f; g)-
reexive, -symmetric and -transitive. Reexivity follows immediately. Suppose
x � y, i.e. (8z 2 A)(z�y , z�f(x)). As we have s�y , z�f(g(y)), we conclude
(8z 2 A)(z�f(g(y)), z�f(x)), wherefrom (8z 2 A)(z�f(x), z�f(g(y))), which,
by de�nition (9), means g(y) � f(x), i.e. � is (f; g)-symmetric. The proof of
transitivity is, for example:

x � y ^ g(y) � z ) (8u 2 A)(u�y , u�f(x)) ^ (8u 2 A)(u�z , u�f(g(y)))

) (8u 2 A)(u�y , u�f(x)) ^ (8u 2 A)(u�z , u�y)

) (8u 2 A)(u�z , u�f(x))

) x � z

The proof of the if part is similar in the case � is de�ned by (10). Only

if part: By Theorem 1 parts (4) and (7), it follows immediately that each of the
formulae (9), (10), is reproductive, i.e. if � is any (f; g)-equivalence relation, it can
be obtained by (9), as well as by (10), by choosing for � just the relation �.
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