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ON A QUASIORDERING OF BIPARTITE GRAPHS

Ivan Gutman and Zhang Fuji

Abstract. A quesiordering of bipartite graphs, based on the coeÆcients of their charac-
teristic polynomials, is considered. Three novel statements are deduced which generalize certain
previous results [5{7] of one of the present authors.

1. Introduction and the Main Result

Let G be a bipartite graph on p vertices. It is well known [1] that the char-
acteristic polynomial of G can be presented in the form

�(G) = �(G; x) =

[p=2]X

k=0

(�1)kb(G; k)xp�2k

where b(G; 0) = 1 and b(G; k) � 0 for all k � 1. For two bipartite graphs G and H
(which need not posses equal number of vertices), we de�ne a relation G � H as
b(G; k) � b(H; k) for all k � 1. If G � H and H � G, then we write G � H .

The relation � induces a quasiordering on the set of all bipartite graphs. This
quasiordering has been introduced by one of the present authors [2, 3]. A number
of results, concerning the relation �, has been recently obtained [5, 6, 7]. In the
present work we communicate a few additional �ndings of the same type, which, in
particular, generalize certain previously known results.

The signi�cance of the quasiordering� lies in the following. Let x1; x2; . . . ; xp
be the eigenvalues of the graph G. Then the quantity E(G) = jx1j+ jx2j+ � � �+ jxpj
is called the energy of the graph G. It has been demonstrated [3] that if G and
H are bipartite and G � H , then E(G) � E(H). It is worth mentioning that the
energy of a graph plays an important role in theoretical chemistry. (For review of
the chemical applications of E(G) see [4].).

The results of the present work are summarized in the following three theo-
rems.
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Let Pn and Cn denote the path and the cycle, respectively, with n vertices.
Let their vertices �1; �2; . . . ; �n be labeled so that �i and �i+1 are adjacent for
i = 1; . . . ; n� 1. In addition, the vertices �1 and �n of Cn are also adjacent.

If two graphs G and H are isomorphic, we shall write G = H .

Let G be a graph and u and � its two vertices. The subgraph obtained by
deletion of the vertex � (respectively u) from G will be denoted by G� (respectively
Gu). We say that the vertices u and � are equivalent if Gu = G� .

Let H be another graph, w its vertex and Hw the subgraph obtained by
deletion of the vertex w from H .

Denote by G(�; w) H the graph obtained by coalescing the vertices � and
w of G and H , respectively. In particular, Pn(r; �) G is the graph obtained from
Pn and G by identifying the vertex �r of Pn with the vertex � of G. We denote
by G(�; r)Cn(s; w)H the graph obtained by coalescing the vertex � of G and the
vertex �r of Cn, and by coalescing the vertices �s of Cn and w of H . Without loss
of generality we may assume that r = 1 and that s � [n=2] + 1.

Let u and � be two distinct vertices of G. Denote by Sa(u)G(�)Sb the graph
obtained by attaching a new vertices of degre one to the vertex u, and b new vertices
of degree one to the vertex � of G.

Proposition 1. If G is bipartite and � is its arbitrary vertex, then

Pn(1; �)G � Pn(3; �)G � � � � � Pn(2k � 1; �)G � Pn(2k; �)G(a)

� Pn(2k � 2; �)G � � � � � Pn(2; �)G

for n = 4k � 1 or n = 4k, and

Pn(1; �)G � Pn(3; �)G � � � � � Pn(2k + 1; �)G � Pn(2k; �)G(b)

� Pn(2k � 2; �)G � � � � � Pn(2; �)G

for n = 4k + 1 or n = 4k + 2.

In the special case when G is a star and � is its central vertex, the above
statement reduces to Theorem 1 from [7].

Proposition 2. If G and H are bipartite graphs and n is even, then for

arbitrary vertices � and w,

G(�; 1)Cn(2; w)H � G(�; 1)Cn(4; w)H � � � � � G(�; 1)Cn(2k; w)H(a)

� G(�; 1)Cn(2k + 1; w)H � G(�; 1)Cn(2k � 1; w)H

� � � � G(�; 1)Cn(3; w)H

for n = 4k, and

G(�; 1)Cn(2; w)H � G(�; 1)Cn(4; w)H � � � � � G(�; 1)Cn(2k + 2; w)H(b)

� G(�; 1)Cn(2k + 1; w)H � G(�; 1)Cn(2k � 1; w)H

� � � � G(�; 1)Cn(3; w)H
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for n = 4k + 2.

In the special case when both vertices � and w have degree one, Proposition
2 reduces to Corollary 2 of [5].

Proposition 3. If G is bipartite and its two vertices u and � are equivalent,

then

Sm(u)G(�)S0 � Sm�1(u)G(�)S1 � � � � � Sm�[m=2](u)G(�)S[m=2]:

A special case of Proposition 3, namely when G is a path and u and � are its
terminal vertices, is just Theorem 2 from [7].

2. Preliminaries

In order to prove Proposition 1-3 we need some preparations. In what follows
G and H denote bipartite graphs. The graph whose components are G and H is
denoted by G _+H .

Let En be the graph with n vertices and without edges. Since [1]

�(G _+En) = xn�(G);

we have the following simple result.

Lemma 1. G _+En � G.�

Without proof we refer to the following three previously known statements.

Lemma 2 [2]. (a) If n = 4k or 4k + 1, then

Pn � P2 _+Pn�2 � � � � � P2k _+Pn�2k � P2k�1 _+Pn�2k+1

� P2k�3 _+Pn�2k+3 � � � � � P1 _+Pn�1:

(b) If n = 4k + 2 or 4k + 3, then

Pn � P2 _+Pn�2 � � � � � P2k _+Pn�2k � P2k+1 _+Pn�2k�1

� P2k�1 _+Pn�2k+1 � � � � � P1 _+Pn�1:

Lemma 3 [1].

�(G(�; w)H) = �(G) �(Hw) + �(G�) �(H)� x�(G�) �(Hw)

i.e.
b(G(�; w)H; k) = b(G _+Hw; k) + b(G� _+H; k)� b(G� _+Hw; k):

Lemma 4 [1]. Let � be a vertex of G having degree one and being adjacent

to the vertex u. Let Guv denote the graph obtained by deleting both u and � from

G. Then

�(G) = x�(G� )��(Gu�) i.e. b(G; k) = b(Gw; k) + b(Gu� ; k � 1):
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Lemma 5. If G is bipartite and � is its vertex, then G � G� .

Proof. Let x1 � x2 � � � � � xp be the eigenvalues of G and y1 � y2 � � � � �
yp�1 the eigenvalues of G� , where p is the number of vertices of G. Since G is
bipartite [1],

xk + xp�k+1 = 0 and yk + yp�k = 0 for k = 1; 2; . . . ; [p=2]:

Consequently
�(G; x) = xp�2q�q

j=1(x
2 � x2j )

and
�(G� ; x) = xp�2q�1�q

j=1(x
2 � y2j );

where q is chosen so that xq > 0 and xq+1 � 0. It is now immediate that

b(G; k) =
X

j1<j2<���<jk�q

x2j1x
2
j2 � � �x

2
jk ;

b(G� ; k) =
X

j1<j2<���<jk�q

y2j1y
2
j2 � � � y

2
jk
:

Lemma 5 follows now from the Cauchy interlacing [1], viz.,

x1 � y1 � x2 � y2 � � � � xp�1 � yp�1 � xp:�

Proof of Proposition 1. Applying Lemma 3 to Pn(r; �)G one obtains

b(Pn(r; �)G; k) = b(P _+G� ; k) + b(Pr�1 _+Pn�r _+G; k)� b(Pr�1 _+Pn�r _+G� ; k):

Note that b(Pn _+G� ; k) is independent of the variable r. Having in mind that
because of �(G _+H) = �(G)�(H),

b(G _+H; k) = �jb(G; j)b(H; k � j);

we conclude that

b(Pn(r; �)G; k) = b(Pn _+G� ; k) + �jb(Pr�1 _+Pn�r; j)[b(G; k � j)� b(G� ; k � j)]:

Since by Lemma 5, b(G; k� j)� b(G� ; k� j) � 0 for all values of k� j, it is evident
that Pn(r; �)G � Pn(s; �)G if and only if Pr�1 _+Pn�r � Ps�1 _+Pn�s. The rest of
the proof is now straightforward from Lemma 2.�

Proof of Proposition 2. Applying Lemma 3 to G(�; 1)Cn(s; w)H one obtains

b(G(�; 1)Cn(s; w)H; k) = b(G(�; 1)Cn _+Hw; k)

+ b(Pn�1(s� 1; �)G _+H; k)� b(Pn�1(s� 1; �)G _+Hw; k):

Again, the �rst term on the right-hand side is independent of the parameter s.
Using the same argument as before we deduce that

G(�; 1)Cn(s; w)H � G(�; 1)Cn(t; w)H
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if and only if
Pn�1(s� 1; �)G � Pn�1(t� 1; �)G:

Proposition 2 follows now from Proposition 1.�

Proof of Proposition 3. Consider a vertex of degree one of Sa(u)G(�)Sb,
which is attached to the vertex u of G. Consider a vertex of degree one of
Sa�1(u)G(�)Sb+1, attached to the vertex � of G. Applying Lemma 4 to these
two vertices one gets.

b(Sa(u)G(�)Sb; k) = b(Sa�1(u)G(�)Sb; k) + b(Ea�1 _+Gu(�)Sb; k � 1)

b(Sa�1(u)G(�)Sb+1; k) = b(Sa�1(u)G(�)Sb; k) + b(Eb _+G�(u)Sa�1; k � 1):

Here H(w)Sa denotes the graph obtained by attaching a vertices of degree one to
the vertex w of H .

Comparing the above relations and having in mind Lemma 1, one concludes
that Sa(u)G(�)Sb � Sa�1(u)G(�)Sb+1 if and only if Gu(�)Sb � G�(u)Sa. On the
other hand, if the vertices u and � are equivalent, then G�(u)Sa�1 is a subgraph
of Gu(�)Sb whenever b � a� 1. This means (because of Lemma 5) that for b > a,
Sa(u)G(�)Sb � Sa�1(u)G(�)Sb+1.

Proposition 3 follows now immediately.�

Let [Sa(u)G(�)Sb](u;w)H be the graph obtained by coalescing the vertices u
of Sa(u)G(�)Sb and w of H . The graph [Sa(u)G(�)Sb](�; w)H is de�ned analogous-
ly. Then a direct application of Lemmas 3 and 5 leads to the following enhancement
of Proposition 3.

Corollary 3.1. If the conditions of Proposition 3 are ful�lled and if H is

bipartite, then [Sa(u)G(�)Sb](u;w)H � [Sa(u)G(�)Sb](�; w)H whenever a � b.
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