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ON A QUASIORDERING OF BIPARTITE GRAPHS

Ivan Gutman and Zhang Fuji

Abstract. A quesiordering of bipartite graphs, based on the coefficients of their charac-
teristic polynomials, is considered. Three novel statements are deduced which generalize certain
previous results [5-7] of one of the present authors.

1. Introduction and the Main Result

Let G be a bipartite graph on p vertices. It is well known [1] that the char-
acteristic polynomial of G' can be presented in the form

[p/2]
®(G) = (G,z) = > _ (—1)*b(G, k)a? 2

k=0

where b(G,0) =1 and b(G, k) > 0 for all £ > 1. For two bipartite graphs G and H
(which need not posses equal number of vertices), we define a relation G > H as
b(G,k) > b(H,k) for all k > 1. If G > H and H > G, then we write G ~ H.

The relation > induces a quasiordering on the set of all bipartite graphs. This
quasiordering has been introduced by one of the present authors [2, 3]. A number
of results, concerning the relation >, has been recently obtained [5, 6, 7]. In the
present work we communicate a few additional findings of the same type, which, in
particular, generalize certain previously known results.

The significance of the quasiordering > lies in the following. Let z1,x2,... ,zp
be the eigenvalues of the graph G. Then the quantity E(G) = |z1| + |@a|+ - -+ |zp]
is called the energy of the graph G. It has been demonstrated [3] that if G and
H are bipartite and G > H, then E(G) > E(H). It is worth mentioning that the
energy of a graph plays an important role in theoretical chemistry. (For review of
the chemical applications of E(G) see [4].).

The results of the present work are summarized in the following three theo-
rems.
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Let P, and C), denote the path and the cycle, respectively, with n vertices.
Let their vertices vy, vs,...,v, be labeled so that v; and v;4; are adjacent for
i=1,...,n— 1. In addition, the vertices v; and v,, of C,, are also adjacent.

If two graphs G and H are isomorphic, we shall write G = H.

Let G be a graph and uw and v its two vertices. The subgraph obtained by
deletion of the vertex v (respectively u) from G will be denoted by G, (respectively
G.). We say that the vertices u and v are equivalent if G,, = G,,.

Let H be another graph, w its vertex and H, the subgraph obtained by
deletion of the vertex w from H.

Denote by G(v,w) H the graph obtained by coalescing the vertices v and
w of G and H, respectively. In particular, P,(r,v) G is the graph obtained from
P,, and G by identifying the vertex v, of P, with the vertex v of G. We denote
by G(v,r) Cr(s,w) H the graph obtained by coalescing the vertex v of G and the
vertex v, of C,, and by coalescing the vertices v of C), and w of H. Without loss
of generality we may assume that » = 1 and that s < [n/2] + 1.

Let u and v be two distinct vertices of G. Denote by S,(u) G(v) Sp the graph
obtained by attaching a new vertices of degre one to the vertex u, and b new vertices
of degree one to the vertex v of G.

ProPOSITION 1. If G is bipartite and v is its arbitrary vertez, then
(a) P,(1,v)G > P,(3,v)G > --- > P,(2k — 1,v)G > P,(2k,v)G
= P2k — 2,v)G > --- = Py(2,1)G
formn =4k —1 orn = 4k, and
(b) P,(1,v)G = P,(3,v)G = --- = P,(2k + 1,v)G > P,(2k,v)G
= P,(2k - 2,v)G > --- > P,(2,v)G

form=4k+1 orn =4k + 2.

In the special case when G is a star and v is its central vertex, the above
statement reduces to Theorem 1 from [7].

ProPOSITION 2. If G and H are bipartite graphs and n is even, then for
arbitrary vertices v and w,
(a) G,1)Ch(2,w)H > G(v,1)Cr,(4,w)H > --- > G(v,1)Cp,(2k, w)H
- G(r,1)Cn(2k+ 1, w)H > G(v,1)C, (2k — 1,w)H
=G, )0, (3, w)H

forn =4k, and

(b) G,1)Cr(2,w)H = G(v,1)Cp(4,w)H > -+ = G(v,1)C(2k + 2, w)H
= G, 1)Cn(2k + 1,w)H = G(v,1)C\,(2k — 1,w)H
s G, 1)Ch (3, w)H



On a quasiordering of bipartite graphs 13

forn =4k + 2.

In the special case when both vertices v and w have degree one, Proposition
2 reduces to Corollary 2 of [5].

ProrosiTION 3. If G is bipartite and its two vertices u and v are equivalent,
then

Sm(u) G(v) So < Sm-1(u) G(v)S1 < -+ < Sp—my2)(w) G(V) S y2)-
A special case of Proposition 3, namely when G is a path and u and v are its
terminal vertices, is just Theorem 2 from [7].
2. Preliminaries

In order to prove Proposition 1-3 we need some preparations. In what follows
G and H denote bipartite graphs. The graph whose components are G and H is
denoted by G+H.

Let E,, be the graph with n vertices and without edges. Since [1]
®(G+E,) = 2"®(q),
we have the following simple result.

LEMMA 1. G+E, ~G.O

Without proof we refer to the following three previously known statements.

LeEmMA 2 [2]. (a) If n =4k or 4k + 1, then

Py > Py+Py_s = - = Poy+Py_o = Poj—1+Pp_ops1
>~ P2k73'i‘Pn72k+3 == P14+P, .

(b) If n =4k + 2 or 4k + 3, then
Py > Po+Py_s = -+ = Pop+Py_sp = Popy1+Ppp—1
= Pop—14+Pp_opi1 = -+ = Pl+Py_y.

LEMMA 3 [1].

(G, w)H) = B(G) B(H,) + (G,) B(H) - 23(G,) B(H,,)

b(G(v,w)H, k) = b(G+Hy, k) + b(G,+H, k) — b(G,+H,, k).

LEMMA 4 [1]. Let v be a vertex of G having degree one and being adjacent
to the vertex u. Let G, denote the graph obtained by deleting both u and v from
G. Then

B(G) = 28(G)) — B(Guy) ie. (G, k) = b(Gu, k) + b(Guw, k — 1).
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LEMMA 5. If G is bipartite and v is its vertez, then G = G, .

Proof. Let 1 > 2 > --- > x,, be the eigenvalues of G and y1 > yo > --- >
Yp—1 the eigenvalues of G, where p is the number of vertices of G. Since G is
bipartite [1],

Tp+Tp_pt1 =0 and yr+y,—r=0 for k=1,2,...,[p/2]

Consequently
d(G,x) = a:p_QqH?:l(a:Q - m?)

and
(I)(Glh m) = mp—Qq—IH?:1 (272 - y?):

where ¢ is chosen so that x4 > 0 and z44; < 0. It is now immediate that

b(Gv k) = Z m?l 1‘?2 e x?k’
J1<j2 < <jr<g
b(G”’ k) = Z yjzlyjzz T yJQk

J1<j2<<jr<g
Lemma 5 follows now from the Cauchy interlacing [1], viz.,

TL2Y1 > T2 > Y2 > Tp_1 > Yp—1 > Tp.d

Proof of Proposition 1. Applying Lemma 3 to P, (r, )G one obtains
b(P,(r,v)G, k) = b(P+G,,k) + b(P,_1+P,_+G,k) — b(P,_1+P,_+G,, k).

Note that b(P,+G,,k) is independent of the variable r. Having in mind that
because of ®(G+H) = ®(G)®(H),

we conclude that
b(Pn(T’, V)G, k) = b(Pn+GV7 k) + Zjb(Pr—l‘i‘Pn—r:j)[b(Ga k— .7) - b(GVa k— .7)]

Since by Lemma 5, b(G, k —j) — b(G,, k — j) > 0 for all values of k — 7, it is evident
that P,(r,v)G = P,(s,v)G if and only if P._;+P,_, = Ps;_1+P,_s. The rest of
the proof is now straightforward from Lemma 2.0J

Proof of Proposition 2. Applying Lemma 3 to G(v,1)Cy(s,w)H one obtains
b(G(v,1)Cp(s,w)H, k) = b(G(v,1)Cp+Hy, k)
+ b(Pn—l(S - 17 V)G‘i_H: k) - b(Pn—l(S - 17 V)G‘i_Hw: k)

Again, the first term on the right-hand side is independent of the parameter s.
Using the same argument as before we deduce that

G, 1)Cp(s,w)H = G(v,1)Cy(t,w)H
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if and only if
P, 1(s—1,v)G > P,_1(t — 1,v)G.

Proposition 2 follows now from Proposition 1.00

Proof of Proposition 3. Consider a vertex of degree one of S,(u)G(v)Ss,
which is attached to the vertex w of G. Consider a vertex of degree one of
Sa—1(u)G(v)Sp+1, attached to the vertex v of G. Applying Lemma 4 to these
two vertices one gets.

b(Sa ()G (1)Sh, k) = b(Sa1 ()G () Sp, k) + b(Ea1+Gu(v)Sh, k — 1)
b(Sar ()G () Spi1, k) = b(Saei (WG (1)Sh, k) + b(Ey+Go (u)Sa1, k — 1).

Here H(w)S, denotes the graph obtained by attaching a vertices of degree one to
the vertex w of H.

Comparing the above relations and having in mind Lemma 1, one concludes
that S, (u)G(V)Sy = Sq—1(u)G(V)Sps1 if and only if Gy (v)Sy = G, (u)Ss. On the
other hand, if the vertices u and v are equivalent, then G, (u)S,—_; is a subgraph
of Gy (v)Sy whenever b > a — 1. This means (because of Lemma 5) that for b > a,
Sa(u)GW)Sp = Sa—1(u)G(¥)Spi1-

Proposition 3 follows now immediately..]

Let [S,(u)G(v)Sp](u, w)H be the graph obtained by coalescing the vertices u
of Sq(u)G(v)Sy and w of H. The graph [S,(u)G(v)Sy](v, w)H is defined analogous-
ly. Then a direct application of Lemmas 3 and 5 leads to the following enhancement
of Proposition 3.

COROLLARY 3.1. If the conditions of Proposition 3 are fulfilled and if H is
bipartite, then [S,(u)G(¥)Sp|(u, w)H = [Sa(u)G(v)Sy](v,w)H whenever a < b.
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