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ON THE LARGEST EIGENVALUE

OF SOME HOMEOMORPHIC GRAPHS

Slobodan K. Simi�c, Vlajko Lj. Koci�c

Abstract. Two particular classes of mutually homeomorphic graphs are considered. For
any two graphs of the same class, the relationship between the structure and the largest eigenvalue
is discussed. Some relevant applications are outlined.

0. Introduction

We will consider only undirected graphs without loops or multiple edges. The
terminology concerning graphs will follow [1]; for all details on graph spectra, not
given here, see [2].

There are many results in the literature concerning the largest eigenvalue of
a graph and the graph structure (see [2] for details). In this paper we are mainly
interested to get some conclusions relating the largest eigenvalue of a graph and
the graph structure, provided the graph is modi�ed locally. Our motivation for this
kind of investigations stems from the following problem of D. M. Cvetkovi�c (see [4],
p. 211):

Let �(k) be the largest eigenvalue of the graph obtained from the cycle Cn

on n vertices (n � 6) by adding an edge between two vertices at distance k (k =
2; 3; . . . ; [n=2]). Prove or disprove that �(k) is monotone.

In the next section we will prove that the monotonicity holds even for some
larger classes of graphs; some possible applications of our main results are discussed
in the last section.

1. The main results

Let A be the adjacency matrix of a graph, � its largest eigenvalue, and x the
corresponding eigenvector. For further reference, we shall rewrite the basic relation
Ax = �x, in the form

(1) �xi =
X
r�i

xr;
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so that is refers, in particular, to the i-th vertex. In this section we will �nd
a relationship between the largest eigenvalue of a graph and a set of invariants
suÆcient to determine a graph. The graphs to be examined belong to the following
classes.

Class 1: Paralel paths. The graphs of this class are all homeomorphic
(topologically equivalent according to [6]) to a multigraph consisting of k paralel
edges; in fact they are obtained by introducing the vertices of degree two into the
edges of the multigraph. By P (n; k) we shall denote the corresponding graphs with
n vertices. Any graph from P (n; k) has m(= n + k � 2) edges and is determined
up to isomorphism, by a k-tuple (m1;m2; . . . ;mk), where m1 � m2 � � � � � mk,
while mi is the number of edges in its i-th path (paths are ordered according to
their lenghts). We �rst prove the following theorem.

Theorem 1. Let P (m1;m2; . . . ;mk) be any graph from P (n; k) while � =
�(m1;m2; . . . ;mk) is its largest eigenvalue. If all m0

r s are �xed except, say mi and
mj , then � is an increasing function in jmi �mj j.

Proof. For convenience, let G = P (m1;m2; . . . ;mk). Next, let

x = (u; x11; . . . ; x
1
m1�1; . . . ; x

s
1; . . . ; x

s
ms�1; . . . ; x

k
1 ; . . . ; x

k
mk�1; �)

be the corresponding eigenvector of � (see Fig. 1).

Also, we assume that

x10 = x20 = � � � = xk0 = u and x1m1
= x2m2

= � � � = xkmk
= �:

Note that, since x corresponds to the largest eigenvalue of a connected graph, we
have x > 0 (0 being 0-vector of the same size). Applying (1) to the interior vertices
of the s-th path (bold lines in Fig. 1), we get the following di�erence equations

(2) xsi+2 � �xsi+1 + xsi = 0 (i = 0; . . . ;ms � 2);

or, if (1) is applied to the exterior (common) vertices of all paths we get

(3) �u = x11 + � � �+ xk1 and �� = x1m1�1 + � � �+ xkmk�1:

The latter conditions, i.e. (3), may be regarded as boundary conditions for (2). By
symmetry, (see [5], p. 166 Lemma 3.3) we also have

(4) xsi = xsms�i (i = 1; . . . ;ms � 1; s = 1; . . . ; k)
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and in particular, u = �.

Solving (2) for a �xed s, we get

(5) xsi = asr
i + bsr

�i;

where r = 1=2(�+
p
�2 � 4) (r > 1).

From (4) it follows that bs = asr
ms , and therefore we get

(6) xsi = as(r
i + rms�i):

Using boundary conditions, from

a1(1 + rm1) = a2(1 + rm2) = � � � = ak(1 + rmk )

we get

(7) as = c�k
t=1

t6=s

(1 + rmt ):

Thus we have

(8) xsi = �k
t=1(1 + rmt)

ri + rms�i

1 + rms

(i = 0; . . . ;ms);

if c from (7) is normalized to 1. It can be readily be seen that (8) is valid even if
s = k and mk = 1.

Applying (1) to any of the exterior vertices, puting � = 2ch2t(t > 0) or
equivalently r = e2t, after some usual transformations we get

(9) 2ch (2t)�
kX

s=1

ch (ms � 2)t

chmst
= 0:

Now, we shall establish the behaviour of � = �(m1; . . . ;mk) under the as-
sumptions of the theorem. Since � = 2ch2t (t > 0), we should pay attention to
t. Consequently, we will examine t = t(m1; . . . ;mi; . . . ;mj ; . . . ;mk) allowing only
mi and mj to change, while keeping their sum �xed (= c, for convenience); if so, t
depends only on mi and c �mi, or, in other words, it is a function of jmi �mj j.
Let

(10) F (m1; . . . ;mk; t) = 2ch (2t)�
kX

s=1

ch (ms � 2)t

chmst
:

Deriving F with respect to t and mi we get

(11)
ÆF

ÆT
= 4sh (2t) +

kX
s=1

mssh 2t+ 2chmstsh (ms � 2)t

ch 2mst
> 0;

and

(12)
ÆF

Æmi
= tsh (2t)

�
1

ch 2mit
� 1

ch 2(c�mi)t

�
:
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Since Æt
Æmi

= � ÆF=Æt
ÆF=Æmi

we conclude

(13) Æt=Æmi > 0 for mi < mj ; while; Æt=Æmi > 0 for mi > mj :

Finally, from (13) we conclude that � is an increasing function in jmi �mj j, com-
pleting the proof of the theorem.

Remark 1. By considering graphs from P (m1;m2; 1) we immediately get the
answer to the problem of D. M. Cvetkovi�c. According to D. M. Cvetkovi�c, P. Rowl-
inson also solved the same problem by evaluating the characteristic polynomials of
the corresponding graphs (see [7]).

Let the k-tuple M 0 = (m0

1;m
0

2; . . . ;m
0

k) be obtained from the k-tuple
M = (m1;m2; . . . ;mk) by deleting m1 and mk (the largest and the smalest com-
ponent), and then inserting f1=2(m1 +mk)g and [1=2(m1 +mk)], and reordering
the components if necessary. The immediate consequence of the theorem above is:

Corollary 1(a): If �(G) and �(G0) are the largest eigenvalues of the graphs
G and G0 from P (n; k) which correspond to the k-tuples M and M 0 respectively,
then �(G0) < �(G).

Applying this corollary repeatedly, we can �nd the extremal graphs from
P (n; k) with respect to the largest eigenvalue, i.e. graphs whose largest eigenvalue
attains minimum or maximum value.

Corollary 1(b): Let �(m1;m2; . . . ;mk) be the largest eigenvalue of the
graph P (m1;m2; . . . ;mk) from P (n; k). Then the following holds

�(q + 1; . . . ; q + 1| {z }
r times

; q; . . . ; q) � �(m1;m2; . . . ;mk) � �(m� 2k + 3; 2; 2; . . . ; 2; 1);

where q = [m=k], while r = m� kq.

Using relation (9) we can easily obtain the nex4t result which is already known
from [6].

Corollary 1(c): Let G be any graph consisting of k paralel paths. Then
the following holds

k=
p
k � 1 < �(G) � (1 +

p
8k � 7)=2;

where the lower bound is the best possible (it is in fact a limiting point), while the
upper bound is attained with the graph P (2; 2; . . . ; 2; 1).

Class 2: Cycles with a vertex in common. These graphs are all homeo-
morphic to a graph consisting of k loops sharing a common vertex. We now denote
by C(n; k) the corresponding graphs with n vertices. Any graph from C(n; k)
has m(= n + k � 1) edges and is determined up to isomorphism, by a k-tuple
(m1;m2; . . . ;mk), where m1 � m2 � � � � � mk, while mi is the number of edges in
its i-th cycle (cycles are ordered according to their lengths).

In what follows, we have a complete analogy with the results from the previous
class. Therefore, we will only mention the results.
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Theorem 2. Let C(m1;m2; . . . ;mk) be any graph form C(n; k), while � =
�(m1;m2; . . . ;mk) is its largest eigenvalue. If all m0

r s are �xed except, say mi and
mj , then � is an increasing function in jmi �mj j.

It is also worth mentioning that relation (9) now reads:

(14) ch (2t)�
kX

s=1

ch (ms � 2)t

chmst
= 0:

Corollary 2(a). If �(G) and �(G0) are the largest eigenvalues of the graphs
G and G0 from C(n; k) which correspond to the k-tuples M and M 0 respectively,
then �(G0) < �(G).

Corollary 2(b). For any graph C(m1;m2; . . . ;mk) from C(n; k) we have
�(q + 1; . . . ; q + 1| {z }

t times

; q; . . . ; q) � �(m1;m2; . . . ;mk) � �(m � 2k + 3; 2; 2; . . . ; 2; 1),

where q = [m=k] while r = m� kq.

Corollary 2(c). Let G be any graph consisting of k cycles with a vertex
in common. Then the following holds

2k=
p
2k � 1 < �(G) �

qp
8k + 1 + 1

where the lower bound is the best possible (it is a limiting point), while the upper
bound is attained with the graph C(3; 3; . . . ; 3).

Remark 2. Some other classes of graphs could be treated by the same tech-
nique. For instance, we can consider paths with a vertex in common, i.e. graphs
homeomorphic to a star. This problem was already solved in [8], but in a more
general form. In contrast to the results above, in this case the largest eigenvalue is
the greatest if all paths are of nearly equal lenght.

2. Some applications

In this section we shall outline some applications of the results above. In
fact, we shall be concerned with determining, in the set of bicyclic graphs within
a �xed number of vertices, those graphs whose largest eigenvalue is the smallest.
The analoguous problem with trees and unicyclic graphs is already settled; paths,
respectively cycles, of appropriate lengths are the corresponding graphs (see also
[3]). With bicyclic graphs the problem is more involved.

For that purpose we shall need the following facts from [6].

An internal path of a graph is a sequence of vertices x1; . . . ; xk such that
all xi are distinct (except possibly x1 = xk), the degrees d(xi) satisfy d(x1) > 3,
d(x2) = � � � = d(xk�1) = 2 (unless k = 2), d(xk) > 3, xi is adjacent to xi+1,
i = 1; . . . ; k � 1.

Proposition 1. If xy is an edge of a conected graph G not on an internal
path, then the largest eigenvalue strictly increases after subdividing the edge xy:
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otherwise, if xy is on an internal path of G while G is nonequal to Tn (see Fig. 2),
then the largest eigenvalue strictly decreases after the subdivision.

Now let G be an arbitrary bicyclic graph with a �xed number of vertices. If
it does not contain vertices of degree one, than it looks as one of the graphs of Fig.
3. Otherwise, we can delete any vertex of degree one from G. By the interlacing
theorem (see [2]), this reduces the largest eigenvalue. If we then insert a new vertex
by subdividing any edge belonging to a cycle, andthus to an internal path as well,
we will get a bicyclic graph again, but with a smaller number of vertices of degree
one. By the proposition above, the latter transformation also reduces the largest
eigenvalue. So, on the basis of these observations, we can restrict ourselves only to
bicyclic graphs as in Fig. 3.

We �rst deduce that the graphs we are looking for cannot be of type C (see
Fig. 3). Namely, by Corollary 2(c), any graph of type C has its largest eigenvalue

greater than 4=
p
3. By Corollary 1(b), graphs of type P attain the minimum largest

eigenvalue if all paths are nearly equal. With these graphs, it is less than 4=
p
3

for n = 8 (number of vertices). Since the largest eigenvalue decreases with n the
assertion is true for n > 8. For n < 8, we can easily check it. So we have only one
candidate of type P to match with the candidates of type B.

Theorem 3. Let G = P (l1; l2; l3) and H = B(l1; l2; l3) be the graphs sug-
gested by Fig. 3. If l1 = l3, then �(G) = �(H).

Proof. Since the cycles in H are of the same lenght, and also equal in lenght
to two paths from G, we arrive to the same systems of di�erence equations, with
the same boundary conditions. So the proof follows immediately.

Remark 3. The graph H = B(l1; l2; l3) with l1 6= l3, cannot be as easily
examined as the graphs from the previous section.

From the theorem above, it follows that some graph of type B(l1; l2; l3) with
l1 = l3 may be as one of the graph we are looking for; otherwise, we get two graphs
as solutions. Some experiments carried on the expert system "GRAPH" (see [9]),
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have supported the latter alternative. We hope to settle this problem in the near
future.
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