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BI-QUOTIENT IMAGES OF ORDERED SPACES

Ljubi�sa Ko�cinac

Abstract. The class of bi-quotient images of orderable spaces is characterized.

1. Introduction

In [9] Michael de�ned bi-sequential spaces as spaces in which whenever a
�lter base F accumulates at a point p (i.e. p 2 F for every F 2 F) then there is
a decreasing sequence fAi : i 2 Ng which meshes with F (i.e. every Ai intersects
every F 2 F and converges to p. He also showed that a space X is bi-sequential if
and only if X is a bi-quotient image of a metrizable space [9] (3.D.1. and 3.D.2.).
Herrlich [5] de�ned radial and pseudo-radial spaces (see [2], [6]) and proved that
these spaces are exactly pseudo-open and quotient images, respectively, of ordered
spaces.

In this paper we de�ne one subclass of radial spaces as a generalization of
the bi-sequential spaces; these spaces are called biradial. We also show (the main
result) that a space is biradial if and only if it is a bi-quotient image of an ordered
space.

We shall use the usual notations and terminology [3]. A mapping f from
X onto Y is bi-quotient if whenever a �lter base F accumulates an y in Y , then
f�1(F) accumulates at some x 2 f�1(y). Ordered space is a linearly ordered set
with the interval topology. All spaces are assumed to be Hausdor� and all maps
are continuous surjections.

2. De�nition and characterization of biradial spaces

De�nition 2.1. A space X is called biradial if whenever a �lter base F accu-
mulates at a point x then there is a family S of subsets of X so that

(i) S is linearly ordered by inclusion.

(ii)
T
fS : S 2 Sg = fxg.

(iii) For any neighbourhood U of x there is an S 2 S such that x 2 S � U .
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(iv) S meshes with F .

Following [6], we say that S is an r-network (c-network in [2] at x in X if S
satis�es conditions (i)-(iii) of the above de�nition.

The following proposition is a reformulation of De�nition 2.1.

Proposition 2.2 A space X is biradial if and only if whenever a �lter base
F accumulates at a point x, then there is a chain fx� : � 2 Lg which converges to
x and every F 2 F intersects in a co�nal subchain.

Here \chain" means a net whose directed set is linearly ordered.

Remark 2.3. Since each linearly ordered set contains a co�nal and well-ordered
subset, we may assume that L in Proposition 2.2. is well-ordered.

(Easy) Examples 1) Obviously, each space in which each point has a linearly
ordered neighbourhood base (so-called lob-spaces or \sph�erique" in [10]) is biradial.

In particular, every R-space in the sence of Kurepa [7] (i.e. a space which
has a base which is a tree with respect to reverse inclusion) and every linearly uni-
formizable space [4], [11] (= \pseudodistanci�es" [8] = k-metrizable [4]) is biradial.
Let us note that R-spaces are called non-archimedean (see [4]).

2) All metric, all ordered and all subordered spaces are biradial.

3) Every subspace of a biradial space is biradial.

4) Every bi-sequential space is biradial. The ordinal space [0; !1], where !1
is the �rst uncountable ordinal, is a biradial space which is not bi-sequential.

Proposition 2.4. Every bi-quotient image of a biradial space is biradial.

This follows by routine veri�cation.

Corollary 2.5. Every continuous image of a compact biradial space is
compact biradial space.

Remark 2.6. Biradial spaces are badly behaved with respect to products. As
the product [0; !1] � [0; !] shows, the Cartesian product of two biradial spaces is
not necessarily biradial, even if both of them are compact. Let us note that every
�nite product of k-metrizable spaces is biradial, because every such product is k-
metrizable [11]. Next, k-box products of at most k many k-metrizable spaces are
linearly uniformizable [4] and thus biradial spaces.

To characterize biradial spaces as the images of ordered spaces under bi-
quotient mappings, we begin with a lemma of Herrlich [5].

Lemma 2.7. If x is a point of a space X so that Y = Xfxg is disrrete
and fx� : � 2 Lg is a well-ordered sequence such that the collection of all sets
X� = fxg [ fx� : � > �g, � 2 L, is a local base at x, then X is orderable.

Theorem 2.8 For a space X the following conditions are equivalent:

(1) X i.s biradial;

(2) X is a bi-quotient image of an ordered space;
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(3) X is a bi-quotient image of a topological sum of linearlv ordered spaces;

(4) X is a bi-quotient image of an lob-space.

Proof. (1) ) (2) ^ (3) ^ (4). Let X be a biradial space. For each x 2 X

and �lter base F accumulating at x, choose a chain C = fx� : � 2 Lg which
converges to x, such that every F 2 F intersects in a co�nal subchain. (Without
loss of generality we may assume that L is well-ordered; see Remark 2.3.) Let
Y (x;F ; C) = fx�g [ fx�� : � 2 Lg be a copy of the set fxg [ fx� : � 2 Lg,
topologized so that every x�� is an isolated point and a base at x� is the collection
of all sets of the form fx�g [ fx�� : � > �g, � 2 L. Let Y be the topological sum
of all Y (x;F ; C). By Lemma 2.7., Y is an orderable space (and a topological sum
of orderable spaces); on the other hand, it is clear that Y is an lob-space. Let us
de�ne the natural surjection f : Y ! X , f(x�) = x, f(x��) = x�. The map f is
continuous. Clearly, it suÆces to show that f is continuous at each x�. Let V be
an arbitrary neighbourhood of f(x�) = x; if C = fx� : � 2 Lg is a chain which
converges to x, then there is a � 2 L such that x� 2 V whenever � > �, and thus
U = fx�g[fx�� : � > �g is a neighbourhood of x� for which f(U) � V . Let us show
that f is bi-quotient. Suppose that F is a �lter base accumulating at x in X ; let
C = fx� : � 2 Lg be a chain which converges to x and let every F 2 F intersect in
a co�nal subchain. Consider Y (x;F ; C) and pick xast 2 f�1(x). Obviously, every
element of f�1(F) intersects every member of the local base at x�, i.e. accumulates
at x�.

(2) _ (3) _ (4) ) (1). This follows immediately from Proposition 2.4 and
the fact that every ordered and every lob-space is biradial (see Examples). This
completes the proof of the theorem.

Corollary 2.9. Every metrizable space (and erery lob-space) is a bi-quotient
image of an ordered space.

3. Some properties of biradial spaces

We have the following de�nition, analogous to De�nition 6.5. in [1] of an
absolutely Fr�echet-Urysohn space:

De�nition 3.1. A completely regular space X is called absolutely radial if its
Stone-Cech compacti�cation �X satis�es the following condition: for everyA � �X

and every x 2 X \ cl�X(A) there is an r-network at x in �X which meshes with
fAg.

Proposition 3.2. Every bi-quotient image of an absolutely radial space is
absolutely radial.

Proof. Let f : X ! Y be a bi-quotient mapping from an absolutely radial
space X onto a completely regular space Y . Let us take any subset B in �Y and
a point y 2 Y \ cl�Y (B). Let ~f : �X ! �Y be the extension of the mapping f .

By Lemma 4.2. in [1], we have cl�X( ~f
�1(B)) \ f ( � 1)(y) 6== ;, i.e. there is an

x 2 X such that f(x) = y and x 2 cl�X( ~f
�1(B))\X . Since X is absolutely radial,
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there is an r-network S at x in �X which meshes with fAg = f ~f�1(B)g. Then,

as one can easily verify, ~f(S) is an r-network at y in �Y which meshes with fBg.
Therefore Y is absolutely radial. Our proposition is proved.

Theorem 3.3. Every T3 1
2

biradial space is absolutely radial.

Proof. Let A be subset of �X , x 2 X \ cl�X(A) and X biradial. We consider
only the non-trivial case x 62 A. Let U be the family of all open subsets of �X
such that U � A and x 62 U . Put F = fX \ U : U 2 Ug. Evidently, F is a �lter
base in X . For every F 2 F , x 2 cl�x(F ). Indeed, if V is any neighbourhood of x,
then V \ A 6= ; and thus U \ V 6= ; for every U 2 U . Hence (U \ V ) \X 6= ;,i.e.
V \(X\U) 6= ;. Therefore F accumulates at x in X . By assumption X is biradial,
so there is an r-network S at x in X which meshes with F . Now we claim that
~S = fcl�X(S) : S 2 Sg is an r-network at x in �X which meshes with fAg. Since
the properties (i), (ii) and (iii) of De�nition 2.1. obviously hold, we need only check
that (iv) holds. We suppose that (iv) is false; then A\cl�X (S) = ; for some S 2 S.
Let V = �X n cl�X(S). Clearly V 2 U , i.e. V \ X 2 F ; thus S \ (V \ X) 6= ;,
whirc is a contradiction. This proves that X is absolutely radial and Theorem 3.3.
is proved.

It is natural to ask when a biradial space is bi-sequential. The proof of the
following theorem is similar to the proof of Theorem 3 in [6] which states that every
pseudo-radial space of countable pseudocharacter is sequential.

Theorem 3.4. Every biradial space of countable pseudocharacter is bi-
sequential.

Proof. Let X be a biradial space of countable pseudocharacter, and a �lter
base accumulating at a point x. Let fUi : i 2 Ng be a family of open subsets of
X such that

T
fUi : i 2 Ng = fxg. Since X is a biradial space there exists an

r-network S at x which meshes with F . We may suppose that x 62 F0 for some
F0F (if x 2

T
fF : F 2 Fg the proof is trivial). For each i 2 N let Si be an element

of S such that x 2 Si � Ui. We claim that ~S = fSi : i 2 Ng is an r-network at
x which meshes with F . Clearly, we need only prove that (iii) in De�nition 2.1.
holds, since, obviously, all the conditions (i), (ii) and (iv) hold. Let us suppose that
(iii) is not true. Then there exists a neighbourhood V of x such that Si nV 6= ; for
every i 2 N . On the other hand, there is an S� 2 S such that x 2 S� � V . Since
S is linearly ordered we have: S� �

T
fSi : i 2 Ng � fUi : i 2 Ng = fxg. But,

S� \ F0 6= ;, and thus S� \ (X n fxg) 6= ;, which is a contradiction. Therefore the
claim is proved. In other words: there is a countable �lter base S wich meshes with
F and converges to x. Thus X is a bi-sequential space. This completes the proof.
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