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ON ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF A FIRST

ORDER FUNCTIONAL DIFFERENTIAL EQUATION

D. C. Angelova and D. D. Bainov

Abstract. Necessary and suÆcient conditions for oscillation of solutions of the equation

y0(t) + 
f(t; y(t); y(�1(t; y(t))); . . . ; y(�n(t; y(t)))) = Q(t); t � t0 2 R; 
 = �1; n � 1

are obtained in the case when Q(t) � 0 on [t0;1) and suÆcient conditions for oscillation and/or
nonoscillation are obtained in the case when Q(t) 6� 0 on [t0;1). The asymptotic behaviour of
oscillatory and nonoscillatory solutions of this equation is studied, too.

In this paper we consider the �rst order functional di�erential equation

y0(t) + 
f(t; y(t); y(�1(t; y(t))); . . . ; y(�n(t; y(t)))) = Q(t) (1)

for 
 = �1; t � t0 2 R, which includes as a particular case the equations

y0(t) + ay(t� r(y(t))) = 0; a > 0 (2)

y0(t)� ay(t� h(t; y(t))) = 0; a > 0; (3)

used by Cooke [4] in modeling infectious diseases and studied in [4, 5, 14].

Our main purpose is to obtain necessary and suÆcient conditions for oscilla-
tion of solutions of (1) when Q(t) � 0 for t � t0, suÆcient conditions for oscillation
and/or nonoscillation of all solutions of (1) when Q(t) 6� 0 for t � t0, and to study
the asymptotic behaviour of oscillatory and nonoscillatory solutions of (1) in the
cases when Q(t) � 0 and Q(t) 6� 0 for t � t0.

The function  (t) 2 C[t0;1) is said to be oscillatory if there exists an in�nite
set f��g

1
�=1 � [t0;1) of zeros of  (t) such that �� ! 1 � ! 1; otherwise it is

said to be nonoscillatory.

An oscillatory function  (t) is said to be quickly (moderately) oscillatory if
j��+1 � �� j ! 0, � !1 (sup

�
j��+1 � �� j <1) for any pair of consecutive zeros of

 (t).
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Further on, we suppose that the functions f;�i (i = 1; n) and Q are contin-
uous and that the conditions (H) are ful�lled:

H1. f(t; u0; u1; . . . ; un) > 0 (< O) for u0ui > 0 (< 0) (i = 0; n) and t > t0.

H2. �i(t; v)!1, for t!1, for any �xed v 2 R, �i(t; v) � �i(t; v), for jvj � jvj
(i = 1; n).

We need the following lemmas:

Lemma 1. [12]. Let  (t) 2 C1[t0;1) be a quickly oscillatiory function and
let  0(t) be bounded. Then  (t)! 0, for t!1.

Lemma 2. [13]. Let  (t) 2 C1[t0;1) be a moderately oscillatory function
 0(t)! 0, for t!1. Then  (t)! 0, for t!1.

Lemma 3. Suppose that the following conditions hold:

1. Conditions (H) are ful�lled, Q(t) � 0 for t � t0, �i(t; v) � t, for every v 2 R
(i = 1; n).

2. The functions f(t; :; . . . ; :) and �i(t; :) are Lipshitzian with Lipshitz constants
A > 0 and Bi > 0 (i = 1; n), respectively.

3. f(t; u0; . . . ; un) is bounded with respect to every �xed ui and it is either nonde-
creasing or nonincreasing in ui (i = 1; n).

Then the necessary and suÆcient condition for the existence of a nonoscilla-
tory solution of (1), which tends to a nonzero constant as t!1, is

1Z
t0

j(ft; c; . . . ; c)jdt <1 for some c 6= 0: (4)

Proof. Necessity. Let y(t) be a nonoscillatory solution of (1) whit lim
t!1

y(t) =

a 6= 0 and let, for instance a > 0 (the proof is similar when a < 0). Then for
each " 2 (0; a) there exists, t1 � t0 such that jy(t) � aj < " for t � t1 and by H2
jy(�i(t; y(t)))� aj < " for t � t2 � t1 (i = 1; n). Then

f(t; y(t); y(�1(t; y(t))); . . . ; y(�n(t; y(t)))) � f(t; c; . . . ; c) for t � t2 (5)

where c = a� " when f(t; :; . . . ; :) is nondecreasing and c = a+ " when f(t; :; . . . ; :)
is nonincreasing. Integrating (1) from t2 to t and using (5), we get

0 = y(t)� y(t2) + 


tZ
t2

f(s; y(s); . . . ; y(�n(s; y(s))))ds

8>>>>>>><
>>>>>>>:

� a� "� y(t2) +

tZ
t2

f(s; c; . . . ; c)ds; when 
 = 1

� a+ "� y(t2) +

tZ
t2

f(s; c; . . . ; c)ds; when 
 = �1
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which yields (4).

SuÆciency. Let 
 = 1 and (4) hold for c > 0 (The proof is similar when
c < 0). Denote Æ = c=2 when f(t; :; . . . ; :) nondecreasing and Æ = c when f(t; :; �; :)
is nonincreasing. Using (4) and H2 we can �nd T1 � t0 so that.Z 1

T1

f(t; c; . . . ; c)dt � Æ (6)

and T2 = minifinft�T1;v2R�i(t; v)g � t0. Let T0 = minfT1; T2g and f0 =
supt�T0 f(t; c; . . . ; c).

Denote by X the space of all continuous functions x : [T0;1) ! R with the
topology of uniform convergence on compact subintervals [T0; �] of [T0;1), where
� > T0 is an integer, by Y the set of these elements x 2 X for which

� � x(t) � 2Æ for t � T0 and jx(t) � x(t)j � f0jt� tj for t; t 2 [T0;1) (7)

and by � : Y ! X the operator, which is de�ned by the formula

(�x)(t) =

8<
:
2Æ; t 2 [T0; T1]

2Æ �
tR

T1

f(s; x(s); x(�1(s; x(s)))); . . . ; x(�n(s; x(s))))ds; t � T1:

It is easy to see that X is a Frechet space and Y is bounded, convex and
closed. Let x 2 Y . Then (�x)(t) is continuous in [T0;1) and

2Æ � (�x)(t) � 2Æ �

tZ
T1

f(s; c; . . . ; c)ds � 2Æ �

Z 1

T1

f(s; c; . . . ; c)ds � Æ for t � T0;

j(�x)(t) � (�x)(t)j; for t; t 2 [T0; T1]

j(�x)(t) � (�x)(t)j =

tZ
T1

f(s; x(s); . . . ; x(�n(s; x(s))))�

�

tZ
T1

f(s; x(s); . . . ; x(�n(s; x(s))))ds �

tZ
T1

jf(s; x(s); . . . ; x(�n(s; x(s))))jds �

�

tZ
t

f(s; c; . . . ; c)ds � f0jt� tj for t > t � T1

since (6) and (7) hold. Thus �(Y ) � Y and the functions in �(Y ) are equicontin-
uous on [T0;1) and hence, on compact subintervals [T0; �] � [T0;1).

Let fx�g
1
�=1 � Y be uniformly convergent to x0. It is clear that x0 2 Y and
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j(�x�)(t)� (�x0)(t)j = 0 for t 2 [T0; T1], and

(�x�)(t) � (�x0)(t) �

Z t

T1

jf(s; x�(s); . . . ; x�(�n(s; x�(s))))�

�f(s; x0(s); . . . ; x0(�n(s; x0(s))))jds �

tZ
T1

F�(s)ds

for t 2 [T1; �] when � > T1 and F�(s) = jf(s; x�(s); . . . ; x�(�n(s; x�(s)))) �
f(s; x0(s); . . . ; x0(�n(s; x0(s))))j.

Since F�(s) � 2f(s; c; . . . ; c) and

F�(s) � A

(
jx�(s)� x0(s)j+

nX
i=1

jx�(�i(s; x�(s)� x0(�i(s; x0(s)))j

)
�

A

(
kx�(s)� x0(s)k+

nX
i=1

[jx�(�i(s; x�(s)� x��i(s; x0(s)))j+ jx�(�i(s; x0(s)))�

x0�i(s; x0(s)))j]

)
� A

(
kx�(s)� x0(s)k�(n+ 1) + f0

nX
i=1

j(�i(s; x�(s)))�

�i(s; x0(s)))j

)
� A

(
kx�(s)� x0(s)k�(n+ 1) + f0

nX
i=1

Bijx�(s)� x0(s)j

)

A

 
n+ 1 + f0

nX
i=1

Bi

!
kx� � x0k� ! 0; � !1;

we conclude according to Lebesgue's dominated convergence theorem, that lim
�!1

[sup[T0;�] j(�x�)(t) � (�x0)(t)j] = 0, i.e. � is a continuous operator.

By Schauder-Tykhono� �xed point theorem [6, p. 9] it follows that there
exists y 2 Y such that y = �y and the function y = y(t) is a solution of (1) for
t � T1. Since y

0(t) = �f(s; y(s); . . . ; y(�n(s; y(s)))) < 0 for y 2 Y and y(t) � Æ for
t � T0, we obtain that there exists lim

t!1
y(t) 6= 0.

Let 
 = �1. The proof is the same as above, but the operator � is de�ned
by the formula

(�x)(t) =

8<
:
Æ; t 2 [T0; T1]

Æ +
tR

T1

f(s; x(s); x(�1(s; x(s)))); . . . ; x(�n(s; x(s))))ds; t � T1:

Lemma 3 is proved.

Theorem 1. Let conditions of Lemma 3 hold. Then the condition

1Z
t0

jf(t; c; . . . ; c)jdt =1; for any c 6= 0 (8)
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is necessary and suÆcient

1) either for oscilation or for monotonous convergence to zero as t ! 1 of all
solutions of (1) when 
 = 1;

2) for oscilation of all bounded solutions of (1) when 
 = �1.

Proof. Necessity. Suppose that (8) is false. Then (4) holds and according to
Lemma 3 there exists a nonoscilatory solution of (1) which converges to a nonzero
constant, which is a contradiction.

SuÆciency. Let (8) be true for any c 6= 0. Suppose that there exists a
nonoscillatory solution y(t) of (1) and let, for instance, y(t) > 0 for t � t1 � t0
when 
 = 1 and 0 < y(t) � L for t � t1 � t0 when 
 = �1 (L =const).

Let 
 = 1. Then H1 and (1) imply that y0(t) > 0 for t � t1 and there exists
lim
t!1

y(t) = k for some k = const > 0. If we suppose that k > 0 then by Lemma 3

we obtain (4), which is a contradiction.

Let 
 = �1. Then H1 and (1) imply that y0(t) > 0 for t � t1. Since y(t)
is bounded, then lim

t!1
y(t) 6= const 6= 0 and by Lemma 3 we obtain (4) which is a

contradiction again.

Theorem 1 is thus proved.

Theorem 2. Let conditions (H) hold, Q(t) � 0 on [t0;1), f(t; u0; . . . ; un)
be bounded with respect to t for every �xed ui and nondecreasing in ui (i = 1; n.
Then all bounded quickly oscillatory solutions of (1) tend to zero as t!1.

Proof. Let y(t) be a bounded quickly oscillatory solution of (1) such that
jy(t)j � L for t � t1 � t0 and L = const > 0. In view of H2 we can �nd t2 � t1 so
that �i(t; y(t)) � t1 for t � t2 (i = 1; n) and hence jy(�i(t; y(t)))j � L for t � t2.
Then

f(t;�L; . . . ;�L) � f(t; y(t); . . . ; y(�n(t; y(t))) � f(t; L; . . . ; L) for t � t2

and from (1) it follows

�f(t; L; . . . ; L) � y0(t) � �f(t;�L; . . . ;�L) when 
 = 1

and
�f(t; L; . . . ; L) � y0(t) � �f(t; L; . . . ; L) when 
 = �1

i.e. y0(t) is bounded. By Lemma 1 y(t)! 0, t!1, and Theorem 2 is proved.

Theorem 3. Let conditions (H) hold, Q(t) � 0 on [t0;1), f(t; �; . . . ; �) be
nondecreasing and lim

t!1
jf(t; c; . . . ; c) = 0 for any �xed c 6= 0. Then all bounded

moderately oscillatory solutions of (1) tend to zero as t!1.

Proof. As in the proof of Theorem 2 we �nd

�f(t; L; . . . ; L)

f(t;�L; . . . ;�L)

)
� y0(t) �

(
�f(t;�L; . . . ;�L); when 
 = 1

f(t; L; . . . ; L); when 
 = �1
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and hence y0(t) ! 0, t ! 1. By Lemma 2 y(t) ! 0, t ! 1, and Theorem 3 is
proved.

Theorem 4. Let conditions (H) and (8) hold, Q(t) � 0 on [t0;1) and f(t)
be either nondecreasing or nonincreasing. Then 1) each nonoscillatory solution of
(1), for which inf

t�t0
jy(t)j > 0, is unbounded when 
 = 1;

2) each nonoscillatory solution of (1) is unbounded when 
 = �1.

Proof. Suppose the contrary and let 0 < y(t) � L for t � t1 � t0 and L =
const > 0. (The proof is similar when �L � y(t) < 0 for t � t1 � t0).

Let 
 = 1. Then there exist l = const > 0 and t2 � t1 such that y(t � l for
t � t2. Via H2 we may �nd t3 � t2 so that

l � y(�i(t; y(t))) � L for t � t3 (i = 1; n): (9)

Then (5) holds for c = l when f(t; . . . ) is nondecreasing and for c = L when f(t; . . . )
is nonincreasing. Integrating (1) from t3 to t, using (5) and (9) and letting t!1
we obtain the contradiction

l � y(t) = y(t3)�

tZ
t3

f(s; y(s); . . . ; y(�n(s; y(s))))ds � y(t3)�

�

tZ
t3

f(s; c; . . . ; c)ds! �1; t!1:

Thus y(t) is unbounded.

Let 
 = �1. From (1) via H1 we obtain that y0(t) > 0 for t � t2 � t1. Since
y(t) > 0 for t � t1 we may �nd t3 � t2 and l = const > 0 so that y(t) � l for t � t3.
Then as in the proof of the case when 
 = 1 we obtain the contradiction

L � y(t) = y(t3) +

tZ
t3

f(s; y(s); . . . ; y(�n(s; y(s))))ds � y(t3)+

+

tZ
t3

f(s; c; . . . ; c)ds!1; t!1:

So, y(t) is unbounded and Theorem 4 is proved.

Now, we shall study the asymptotic behaviour of oscilatory solutions of (1)
when Q(t) 6� 0 for t � t0 and 
 = 1.

Lemma 4. Let conditions (H) and (8) hold, f(t; �; . . . ; �) be nondecreasing
(nonincreasing), Q(t) 6� 0 for t � t0 and

1Z
t0

jQ(t)jdt <1: (10)
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Then
lim
t!1

inf jy(t)j = 0 (11)

for all (all bounded) solutions of (1).

Proof. Let f(t; �; . . . ; �) be nondecreasing and suppose there exists a nonoscila-
tory solution y(t) of (1) such that y(t) � l for t � t1 � t0 and some l = const > 0
(The proof is similar when y(t) � �l for t � t1 � t0). Using H2 we obtain (5) for
t � t2 � t1 and c = l. Integrating (1) from t2 to t, using (5) and (10) and taking
t!1 we obtain the contradiction

l � y(t) � y(t2) +

tZ
t2

jQ(s)jds�

tZ
t2

f(s; l; . . . ; l)ds! �1; t!1:

Let f(t; �; . . . ; �) be nonincreasing and there exists a bounded nonoscillatory
solution y(t) of (1) such that l � y(t) � L for t � t1 � t0 and some L > l > 0
(The proof is similar when l < L < 0). As above, we obtain (5) for c = L and
t � t2 � t1. Integrating (1) from t2 to t, using (5) and allowing t ! 1 we obtain
the contradiction

l � y(t) � y(t2) +

tZ
t2

jQ(s)jds�

tZ
t2

f(s; L; . . . ; L)ds! �1; t!1:

Lemma 4 is proved.

Theorem 5. If conditions (H) and (10) hold, then:

1) Each oscillatory solution of (1), which does not change its sign, tends to
zero as t!1.

2) Each oscillatory solution of (1), which changes its sign, tends to zero as
t!1 if the following conditions are ful�lled:

a) f(t; �; . . . ; �) is nondecreasing and

1Z
t0

jf(t; c; . . . ; c)dt <1 for any c 6= 0; (12)

b) �i(t; v) � t (i = 1; n) for any �xed v 2 R;

c) there exists the uniform on t bound

'(t) = lim
juj!1

f(t; u; . . . ; u)

u
such that

1Z
t0

~f(t)dt <1

where ~f(t) �
f(t; u; . . . ; u)

u
for u 6= 0:
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Proof. First we will prove that all oscillatory solutions of (1) are bounded.
Suppose the contrary, i.e. there exists an unbounded solution y(t) of (1). Then we
can �nd t1 � t0 so that �i(t; y(t)) � t0 (i = 1; n) for t � t1 and sets f��g

1
�=1 �

[t1;1) and f��g
1
�=1 � (�1;1) of zeros and extremal points of y(t), respectively,

with the properties: �� !1, �!1; �� !1, � !1, and if M� = jy(��)j, then
sup
[t0;t1]

jy(t)j � M1 � M1 � . . . and M� ! 1, � ! 1, (the index � may be greater

than the index �, since sticknesses of y(t) with the zero solution are possible).

Let y(t) does not change its sign and let for instance, y(t) � 0 for t � t0 (The
proof is similar when y(t) � 0 for t � t0). Via H2 and H1 (1) yields

y0(t) � Q(t) for t � t1: (13)

Integrating (13) from �� to �� and taking � !1 we get the contradiction

1 >

1Z
t0

jQ(t)jdt �M� !1; � !1:

Let y(t) change its sign and (��; ��+1) 3 �� be its positive semicycle (The
proof is similar when (��; ��+1) is a negative semicycle). Let t1 � t0 be chosen so

large that
R1
t1
'(t)dt < 1=2. Since y(t) � M� and M� � jy(�i(t; y(t)))j (i = 1; n)

for t 2 (��; ��+1), then

f(t;�M� ; . . . ;�M�) � f(t; y(t); . . . ; y(�n(t; y(t)))) for t 2 (��; ��+1):

Integrating (1) from �� to �� , dividing by M� and tending � !1 we obtain
the contradiction

1 �
1

M�

��Z
��

jQ(t)jdt+

��Z
��

f(t;�M� ; . . . ;�M�)

�M�

dt �

�
1

M�

1Z
t0

jQ(t)jdt+

1Z
t1

f(t;�M� ; . . . ;�M�)

�M�

dt �!
�!1

1Z
t1

'(t)dt <
1

2
:

Thus, all oscilatory solutions of (1) are bounded. If we suppose that there
exists an oscilatory solution y(t) of (1) such that lim

t!1
sup jy(t)j = 2m for some m =

const > 0, then using H2 and (10) we can �nd numbers t0 � t1 � �� < �� so, that
�i(t; y(t)) � t0 (i = 1; n) for t � t1,

R1
t1
jQ(T )jdt < m=3 y(��) = 0 and jy(��)j > m.

Let y(t) does not change its sign on [t0;1). As above we obtain (13). Inte-
grating (13) from �� to �nu and having in mind the above assumptions, we obtain
the contradiction

m �

��Z
t1

jQ(t)jdt �

Z 1

t1

jQ(T )jdt <
m

3
:
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Let y(t) change its sign on [t0;1) and y(��) > 0 (The proof is similar when
y(��) < 0). Let t1 be chosen so large thatZ 1

t1

jf(t;�2m; . . . ;�2m)jdt <
m

3
:

Integrating (1) from �� to �nu and using the assumptions on f and Q we obtain
the contradiction

m �

��Z
��

jQ(t)jdt�

��Z
��

f(t;�2m; . . . ;�2m)dt �

1Z
t1

jQ(T )jdt+

+

1Z
t1

jf(t;�2m; . . . ;�2m)jdt <
2m

3
:

Theorem 5 is thus proved.

Theorem 6. Let conditions (H) and (12) hold, f(t; . . . ) be nondecreasing,
Q(t)j > 0 on [t0;1) and

1Z
t0

jQ(t)jdt =1: (14)

Then all oscillatory solutions of (1) are unbounded.

Proof. Let Q(t) > 0 on [t0;1) (The proof is similar when Q(t) < O for
t � t0) and there exists a bounded oscillatory solution y(t) of (1) such that

jy(t)j � c for t � t1 � t0 and jy(�i(t; y(t)))j � c (i = 1; n) for t � t2 � t1

for some c > 0. Then f(t; y(t); . . . ; y(�n(t; y(t)))) � f(t; c; . . . ; c) for t � t2 and
integrating (1) from t2 to t and using (12) and (14), we obtain the contradiction

c � y(t) � y(t2) +
R t
t2
Q(s)ds�

R t
t2
f(s; c; . . . ; c)ds!1; t!1.

Theorem 6 is proved.

Now we will obtain suÆcient conditions for nonocillation of all solutions of
(1) and we will study their asymptotic behaviour.

Theorem 7. Let conditions (H) and (14) hold, jQ(t) > 0 on [t0;1) and con-
ditions a) -c) of Theorem 5 be ful�lled. Then all solutions of (1) are nonoscillatory.

Proof. Let Q(t) > 0 on [t0;1) (The proof is similar when Q(t) < O on
[t0;1)). Suppose there exists an oscillatory solution y(t) of (1). According to
Theorem 6, y(t) is unbounded.

Let t1 be a zero of y(t) such that �i(t; y(t)) � t0 (i = 1; n) for t � t1 andR1
t1
'(t)dt < 1

2 . As in the proof of the �rst part of Theorem 5 we obtain that

f(t; y(t); . . . ; y(�n(t; y(t)))) � f(t;M� ; . . . ;M�) for t 2 (��; ��+1).
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Integrating (1) from �� to ��+1, dividing by M� and taking � ! 1 we get
the contradiction

1 �

��+1Z
��

f(t;M� ; . . . ;M�)

M�

dt �

1Z
t1

f(t;M� ; . . . ;M�)

M�

dt �!
�!1

1Z
t1

'(t)dt <
1

2
:

Theorem 7 is proved.

Corollary 1. Let conditions of Theorem 7 hold. Then all solutions of
(1) are positive (negative) and unbounded ahore (below) when Q(t) > 0 (< 0) on
[t0;1).

Proof. Let Q(t) > 0 on [t0;1) (The proof is similar when Q(t) < O on
[t0;1)). According to Theorem 7, all solutions of (1) are nonoscillatory. Suppose
there exists a solution y(t) < O for t � t1 � t0 of (1). From H1 and (1) we obtain
y0(t) � Q(t) for t � t1. Integrating this inequality from t1 to t and taking t ! 1
we obtain the contradiction

0 > y(t) � y(t1) +

tZ
t1

Q(s)ds �!
�!1

y(t1) +

1Z
t1

Q(s)ds =1:

Thus all solutions of (1) are positive.

Suppose that 0 < y(t) � M for t � t2 � t1 and some M = con-
st > 0. Then y(�i(t; y(t))) � M for t � t2 � t1 (i = 1; n) and hence
f(t; y(t); . . . ; y(�n(t; y(t)))) � f((t;M; . . . ;M) for t � t2. Integrating (1) from
t2 to t using (12) and (14) we obtain the contradiction

M � �(t) � y(t2) +

tZ
t2

Q(s)ds�

Z t

t2

f(s;M; . . . ;M)ds!1; t � 1:

Corollary 1 is established.

Theorem 8. Let conditions (H) and (14), jQ(t)j > 0 for t � t0 and
f(t; �; . . . ; �) be nonincreasing. If for any c > 0

1Z
t0

[Q(t)� f(t; c; . . . ; c)] = �1 when Q(t) > 0 (15)

 Z 1

t0

[Q(t)� f(t;�c; . . . ;�c)]dt =1 when Q(t) > 0

!

then all nonoscillatory solutions of (1) are positive (negative) and unbounded above
(below).
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Proof. As in the proof of the �rst part of Corollary 1 we establish that
the nonoscilatory solutions of (1) are positive. Suppose that y(t) � M for
t � t1 � t0 and M = const > 0. Then y(�i(t; y(t))) � M (i = 1; n) and
f(t; y(t); . . . ; y�n(t; y(t)))) � f(t;M; . . . ;M) for t � t2 � t1. Integrating (1) from
t2 to t, tending t!1 and using (15) we get

0 < y(t) � y(t2) +

tZ
t2

[Q(s)� f(s;M; . . . ;M)]ds! �1; t!1:

This contradiction proves Theorem 8.

For the equation

y0(t) + 
f(t; y(�1(t; y(t)))) = Q(t); t � t0 2 R; 
 = �1; (16)

which is a particular case of (1), the following theorem holds:

Theorem 9. In addition to (H2) for n = 1 and (10) suppose:

1. f(t; u) 2 C([t0;1)�R), uf(t; u) > 0 for u 6= 0 and t � t0, f(t; �) is either
nondecreasing when 
 = �1 and

0 < inf
t>t0

jf(t; u)j � sup
t�t0

jf(t; u)j <1 for any �xed u 2 R: (17)

2. There exists the derivatives @�1(t; v)=@t and @�1(t; v)=@v and they are
bounded and nonnegative.

Then all nonoscillatory solutions of (16), which are bounded, tend to zero as
t!1.

Proof. Let y(t) > 0 for t � t1 � t0 (The proof is similar when y(t) < 0
for t � t1 � t0). As in the proof of Lemma 2 we establish (11) for all bounded
nonoscillatory solutions of (16). Then

lim
t!1

inf jy(t; y(t)))j = 0; t � t2 � t1: (18)

Suppose

lim
t!1

sup jy(�1(t; y(t)))j > m > 0; t � t2 � t1: (19)

In view of (18) and (19), there exists a sequence f��g
1
�=1 � [t2;1) with the

following properties: �� ! 1, � ! 1 y(�1(�nu; y(��))) > m for all � and there
exists �� 2 (�� ; ��+1) such that y(�1(�� ; y(��))) < m=2 for � � 1.

Let �� be the largest number less than �� such that m=2 = y(�1(�� ; y(��)))
and �� be the smallest number greater than �� such that m=2 = y(�1(�� ; y(��)))
for � � 1. Now in the interval [�� ; �� ] there exists 
� such that

y0(�1(
� ; y(
�)))

�
@�1(
� ; y(
nu))

@t
+
@�1(
� ; y(
nu))

@v
y0(
�)

�
= (20)

=
y(�1(�� ; y(��)))� y(�1(�� ; y(��)))

�� � ��
>
m�m=2

�� � ��
=

m

2(�� � ��)
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by the mean value theorem.

But in view of (16), (10) and condition 1 of Theorem 9 we obtain that y0(t),
and hence v0(�1(t; y(t))), are bounded for t > t2. Then via condition 2 of Theorem
9 we obtain the estimate

�nu� �� > M for � � 1; M = const > 0: (21)

On the other hand, y(�1(t; y(t))) � m=2 on [�� ; �� ] because of the way ��
and �� were chosen. Denote u =

S1
�=1[�� ; �� ]. Then

f(t; y(�1(t; y)))) � f(t;m=2) for t 2 u (22)

when f(t; �) is nondecreasing (The proof is similar when f(t; �) is nonincreasing).

If we suppose that
R1
t2
f(t; y(�1(t; y(t))))dt = 1, then from (16) using (10)

we obtain the contradiction

0 < y(t) � y(t2) +

tZ
t2

jQ(s)jds�

tZ
t2

f(s; y(�1(s; y(s))))ds ! �1; t!1:

Thus
R1
t2
f(s; y(�1(s; y(s))))ds <1. Using (21) and (22) we get

1Z
t2

f(s; y(�1(s; y(s))))ds �

Z
u

f(s; y(�1(s; y(s))))ds �

Z
u

f(s;m=2)ds =

1X
�=1

��Z
��

f(s;m=2)ds >
1X
�=1

f0(�� � ��) > f0M lim
n!1

nX
�=1

� =1

where f0 = inf t � t2f
�
t; m2

�
.

This contradiction proves Theorem 9.

Remark. Theorem 9 is proved by the techniquc of Chen [3].

We note that suÆcient conditions for oscillation of sclutions of �rst order
fuctional di�erential equations have been obtained in [1, 2, 7 -11, 15] and in the
papers cited in [7, 15]. Asymptotic behaviour of oscillatory and nonoscillatory
solutions of cited equations is not studied yet.

Finally we shall apply Theorems 1, 2 and 4 to the equations (2) and (3).

Consider equation (2). It is a particular case of (1) with 
 = 1, f(t; u) = au
and �(t; v) = t � r(v). If r(v) is Lipschitzian and r(v) � r(v) for jvj � jvj then
all solutions of (2) are either oscillatory or tend monotonously to zero as t ! 1
according to Theorem 1. By Theorem 2 all bounded quickly oscillatory solutions
of (2) tend to zero as t !1 and by Theorem 4 every nonoscillatory solution y(t)
of (2), for which inft�t0 jy(t)j > 0, is unbounded.
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Consider equation (3). It is a particular case of (1) with 
 = �1, f(t; u) = au
and �(t; v) = t � h(t; v). If h(t; �) is Lipschitzian and h(t; v) � h(t; v) for jvj �
jvj then according to Theorem 1 all bounded solutions of (3) are oscillatory, by
Theorem 2 all bounded quickly oscillatory solutions of (3) tend to zero as t ! 1
and by Theorem 4 all nonoscillatory solutions of (3) are unbounded.

REFERENCES

[1] C. Anderson, Asymptotic oscillation results for solutions to �rst order nonlinear di�eren-
tial di�erence equations of advanced type, J. Math. Anal. Appl. 24 (1968), 430{439.

[2] Ja. Bykov, A. Matakev, Oscilation properties of �rst order functional di�erential equations,
Issled. Integro-di�. equat., Ilim-Frunze, 1979, 22-28 (in Russian).

[3] L. Chen, On the nonscillatory Properties of solutions of a functional di�erential equation,
Bull. Soc. Math. Grece 17 (1976), 11{19.

[4] K. Cooke, Functional di�erential systems: Some models and perturbation problems, Int.
Symp. Di�er. Equat. Dynamic Syst., Academic Press, New York, 1965, 167{188.

[5] K. Cooke. Asymptotic theory for a delay di�erential equation u0 = �au(t � r(u(t))), J.
Math. Anal. Appl. 19 (1967), 160{173.

[6] W. Coppel, Stability and Asimptotie Behaviour of Di�erential Equations, Heath, Boston,
1965.

[7] Y. Kitamura, T. Kusano, Oscillatian of �rst order nonlinear di�erential equations with
deviating arguments, Proc. Amer. Math. Soc. 78 (1980), 64{68.

[8] R. Koplatadze, On monotonous solutions of �rst order nonlinear di�erential eyrrutions
with a retarded argument, Proc. Inst. Appl. Math. I. N. Vecua 8 (1980j. 24{27 (in Russian).

[9] H. Onose,Oscillation of functional di�erential equation arising from an industrial problenr,
J. Austral. Math. Soc. (A) 26 (1978), 323{329.

[10] C. Ladde, Class of functional equations with applications, Nonlin. Anal. TMA 2 (1978),
259{261.

[11] Ja. Pessin, On the behaviour of solutions of a strongly nonlinear di�erential equation with
delay, Di�er. Equat. 10 (1974), 1025{1036 (in Russian).

[12] Ch. Philos, V. Staikos, Quick oscillations with damping, Techn. Report, Univ. Ioanina 94

(1977), 1{12.

[13] Ch. Philos, V. Staikos, Non-slow oscillations with dumping, Techn. Report, Univ. Ioanina
92 (1977), 1{14.

[14] B. Stephan, Asymptotic behaviour of a functinal di�erential equation with bounded lag,
SIAM J. Appl. Math. 17 (1969), 272{279.

[15] L. Tomaras, Oscillatory behaviour of �rst order delay di�erential equations, Bull. Austral.
Math. Soc. 19 (1978), 183{190.

Institute for social management (Received 11 03 1985)
Academy of medicine, So�a


