# ON ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF A FIRST ORDER FUNCTIONAL DIFFERENTIAL EQUATION 

D. C. Angelova and D. D. Bainov

Abstract. Necessary and sufficient conditions for oscillation of solutions of the equation

$$
y^{\prime}(t)+\gamma f\left(t, y(t), y\left(\Delta_{1}(t, y(t))\right), \ldots, y\left(\Delta_{n}(t, y(t))\right)\right)=Q(t), \quad t \geq t_{0} \in R, \quad \gamma= \pm 1, \quad n \geq 1
$$

are obtained in the case when $Q(t) \equiv 0$ on $\left[t_{0}, \infty\right)$ and sufficient conditions for oscillation and/or nonoscillation are obtained in the case when $Q(t) \not \equiv 0$ on $\left[t_{0}, \infty\right)$. The asymptotic behaviour of oscillatory and nonoscillatory solutions of this equation is studied, too.

In this paper we consider the first order functional differential equation

$$
\begin{equation*}
y^{\prime}(t)+\gamma f\left(t, y(t), y\left(\Delta_{1}(t, y(t))\right), \ldots, y\left(\Delta_{n}(t, y(t))\right)\right)=Q(t) \tag{1}
\end{equation*}
$$

for $\gamma= \pm 1, t \geq t_{0} \in R$, which includes as a particular case the equations

$$
\begin{align*}
& y^{\prime}(t)+a y(t-r(y(t)))=0, \quad a>0  \tag{2}\\
& y^{\prime}(t)-a y(t-h(t, y(t)))=0, \quad a>0 \tag{3}
\end{align*}
$$

used by Cooke [4] in modeling infectious diseases and studied in [4, 5, 14].
Our main purpose is to obtain necessary and sufficient conditions for oscillation of solutions of (1) when $Q(t) \equiv 0$ for $t \geq t_{0}$, sufficient conditions for oscillation and/or nonoscillation of all solutions of $(1)$ when $Q(t) \not \equiv 0$ for $t \geq t_{0}$, and to study the asymptotic behaviour of oscillatory and nonoscillatory solutions of (1) in the cases when $Q(t) \equiv 0$ and $Q(t) \not \equiv 0$ for $t \geq t_{0}$.

The function $\psi(t) \in C\left[t_{0}, \infty\right)$ is said to be oscillatory if there exists an infinite set $\left\{\tau_{\nu}\right\}_{\nu=1}^{\infty} \subseteq\left[t_{0}, \infty\right)$ of zeros of $\psi(t)$ such that $\tau_{\nu} \rightarrow \infty \nu \rightarrow \infty$; otherwise it is said to be nonoscillatory.

An oscillatory function $\psi(t)$ is said to be quickly (moderately) oscillatory if $\left|\tau_{\nu+1}-\tau_{\nu}\right| \rightarrow 0, \nu \rightarrow \infty\left(\sup _{\nu}\left|\tau_{\nu+1}-\tau_{\nu}\right|<\infty\right)$ for any pair of consecutive zeros of $\psi(t)$.

AMS Subject Classification (1980): Primary 34K20.

Further on, we suppose that the functions $f, \Delta_{i}(i=\overline{1, n})$ and $Q$ are continuous and that the conditions $(H)$ are fulfilled:
H1. $f\left(t, u_{0}, u_{1}, \ldots, u_{n}\right)>0(<O)$ for $u_{0} u_{i}>0(<0)(i=\overline{0, n})$ and $t>t_{0}$.
H2. $\Delta_{i}(t, v) \rightarrow \infty$, for $t \rightarrow \infty$, for any fixed $v \in R, \Delta_{i}(t, v) \leq \Delta_{i}(t, \bar{v})$, for $|v| \leq|\bar{v}|$ $(i=\overline{1, n})$.
We need the following lemmas:
Lemma 1. [12]. Let $\psi(t) \in C^{1}\left[t_{0}, \infty\right)$ be a quickly oscillatiory function and let $\psi^{\prime}(t)$ be bounded. Then $\psi(t) \rightarrow 0$, for $t \rightarrow \infty$.

Lemma 2. [13]. Let $\psi(t) \in C^{1}\left[t_{0}, \infty\right)$ be a moderately oscillatory function $\psi^{\prime}(t) \rightarrow 0$, for $t \rightarrow \infty$. Then $\psi(t) \rightarrow 0$, for $t \rightarrow \infty$.

Lemma 3. Suppose that the following conditions hold:

1. Conditions $(\mathrm{H})$ are fulfilled, $Q(t) \equiv 0$ for $t \geq t_{0}, \Delta_{i}(t, v) \leq t$, for every $v \in R$ $(i=\overline{1, n})$.
2. The functions $f(t, ., \ldots,$.$) and \Delta_{i}(t,$.$) are Lipshitzian with Lipshitz constants$ $A>0$ and $B_{i}>0(i=\overline{1, n})$, respectively.
3. $f\left(t, u_{0}, \ldots, u_{n}\right)$ is bounded with respect to every fixed $u_{i}$ and it is either nondecreasing or nonincreasing in $u_{i}(i=\overline{1, n})$.

Then the necessary and sufficient condition for the existence of a nonoscillatory solution of (1), which tends to a nonzero constant as $t \rightarrow \infty$, is

$$
\begin{equation*}
\int_{t_{0}}^{\infty}|(f t, c, \ldots, c)| d t<\infty \quad \text { for some } c \neq 0 \tag{4}
\end{equation*}
$$

Proof. Necessity. Let $y(t)$ be a nonoscillatory solution of (1) whit $\lim _{t \rightarrow \infty} y(t)=$ $a \neq 0$ and let, for instance $a>0$ (the proof is similar when $a<0$ ). Then for each $\varepsilon \in(0, a)$ there exists, $t_{1} \geq t_{0}$ such that $|y(t)-a|<\varepsilon$ for $t \geq t_{1}$ and by H2 $\left|y\left(\Delta_{i}(t, y(t))\right)-a\right|<\varepsilon$ for $t \geq t_{2} \geq t_{1}(i=\overline{1, n})$. Then

$$
\begin{equation*}
f\left(t, y(t), y\left(\Delta_{1}(t, y(t))\right), \ldots, y\left(\Delta_{n}(t, y(t))\right)\right) \geq f(t, c, \ldots, c) \text { for } t \geq t_{2} \tag{5}
\end{equation*}
$$

where $c=a-\varepsilon$ when $f(t, ., \ldots,$.$) is nondecreasing and c=a+\varepsilon$ when $f(t, ., \ldots,$. is nonincreasing. Integrating (1) from $t_{2}$ to $t$ and using (5), we get

$$
\begin{aligned}
& 0=y(t)-y\left(t_{2}\right)+\gamma \int_{t_{2}}^{t} f\left(s, y(s), \ldots, y\left(\Delta_{n}(s, y(s))\right)\right) d s \\
& \left\{\begin{array}{l}
\geq a-\varepsilon-y\left(t_{2}\right)+\int_{t_{2}}^{t} f(s, c, \ldots, c) d s, \text { when } \gamma=1 \\
\leq a+\varepsilon-y\left(t_{2}\right)+\int_{t_{2}}^{t} f(s, c, \ldots, c) d s, \text { when } \gamma=-1
\end{array}\right.
\end{aligned}
$$

which yields (4).
Sufficiency. Let $\gamma=1$ and (4) hold for $c>0$ (The proof is similar when $c<0$ ). Denote $\delta=c / 2$ when $f(t, ., \ldots,$.$) nondecreasing and \delta=c$ when $f(t, ., \cdot,$. is nonincreasing. Using (4) and H 2 we can find $T_{1} \geq t_{0}$ so that.

$$
\begin{equation*}
\int_{T_{1}}^{\infty} f(t, c, \ldots, c) d t \leq \delta \tag{6}
\end{equation*}
$$

and $T_{2}=\min _{i}\left\{\inf _{t \geq T_{1}, v \in R} \Delta_{i}(t, v)\right\} \geq t_{0}$. Let $T_{0}=\min \left\{T_{1}, T_{2}\right\}$ and $f_{0}=$ $\sup _{t \geq T_{0}} f(t, c, \ldots, c)$.

Denote by $X$ the space of all continuous functions $x:\left[T_{0}, \infty\right) \rightarrow R$ with the topology of uniform convergence on compact subintervals $\left[T_{0}, \sigma\right]$ of $\left[T_{0}, \infty\right)$, where $\sigma>T_{0}$ is an integer, by $Y$ the set of these elements $x \in X$ for which

$$
\begin{equation*}
\sigma \geq x(t) \geq 2 \delta \text { for } t \geq T_{0} \text { and }|x(t)-x(\bar{t})| \geq f_{0}|t-\bar{t}| \text { for } t, \bar{t} \in\left[T_{0}, \infty\right) \tag{7}
\end{equation*}
$$

and by $\Phi: Y \rightarrow X$ the operator, which is defined by the formula

$$
(\Phi x)(t)=\left\{\begin{array}{lr}
2 \delta, & t \in\left[T_{0}, T_{1}\right] \\
\left.2 \delta-\int_{T_{1}}^{t} f\left(s, x(s), x\left(\Delta_{1}(s, x(s))\right)\right), \ldots, x\left(\Delta_{n}(s, x(s))\right)\right) d s, \quad t \geq T_{1}
\end{array}\right.
$$

It is easy to see that $X$ is a Frechet space and $Y$ is bounded, convex and closed. Let $x \in Y$. Then $(\Phi x)(t)$ is continuous in $\left[T_{0}, \infty\right)$ and

$$
\begin{aligned}
& 2 \delta \geq(\Phi x)(t) \geq 2 \delta-\int_{T_{1}}^{t} f(s, c, \ldots, c) d s \geq 2 \delta-\int_{T_{1}}^{\infty} f(s, c, \ldots, c) d s \geq \delta \text { for } t \geq T_{0} \\
& |(\Phi x)(t)-(\Phi x)(\bar{t})|, \text { for } t, \bar{t} \in\left[T_{0}, T_{1}\right] \\
& \qquad|(\Phi x)(t)-(\Phi x)(\bar{t})|=\int_{T_{1}}^{\bar{t}} f\left(s, x(s), \ldots, x\left(\Delta_{n}(s, x(s))\right)\right)- \\
& -\int_{T_{1}}^{t} f\left(s, x(s), \ldots, x\left(\Delta_{n}(s, x(s))\right)\right) d s \geq \int_{T_{1}}^{\bar{t}}\left|f\left(s, x(s), \ldots, x\left(\Delta_{n}(s, x(s))\right)\right)\right| d s \geq \\
& \geq \int_{t}^{\bar{t}} f(s, c, \ldots, c) d s \geq f_{0}|t-\bar{t}| \text { for } \bar{t}>t \geq T_{1}
\end{aligned}
$$

since (6) and (7) hold. Thus $\Phi(Y) \subset Y$ and the functions in $\Phi(Y)$ are equicontinuous on $\left[T_{0}, \infty\right)$ and hence, on compact subintervals $\left[T_{0}, \sigma\right] \subset\left[T_{0}, \infty\right)$.

Let $\left\{x_{\nu}\right\}_{\nu=1}^{\infty} \subset Y$ be uniformly convergent to $x_{0}$. It is clear that $x_{0} \in Y$ and
$\left|\left(\Phi x_{\nu}\right)(t)-\left(\Phi x_{0}\right)(t)\right|=0$ for $t \in\left[T_{0}, T_{1}\right]$, and

$$
\begin{gathered}
\left(\Phi x_{\nu}\right)(t)-\left(\Phi x_{0}\right)(t) \geq \int_{T_{1}}^{t} \mid f\left(s, x_{\nu}(s), \ldots, x_{\nu}\left(\Delta_{n}\left(s, x_{\nu}(s)\right)\right)\right)- \\
-f\left(s, x_{0}(s), \ldots, x_{0}\left(\Delta_{n}\left(s, x_{0}(s)\right)\right)\right) \mid d s \geq \int_{T_{1}}^{t} F_{\nu}(s) d s
\end{gathered}
$$

for $t \in\left[T_{1}, \sigma\right]$ when $\sigma>T_{1}$ and $F_{\nu}(s)=\mid f\left(s, x_{\nu}(s), \ldots, x_{\nu}\left(\Delta_{n}\left(s, x_{\nu}(s)\right)\right)\right)-$ $f\left(s, x_{0}(s), \ldots, x_{0}\left(\Delta_{n}\left(s, x_{0}(s)\right)\right)\right) \mid$.

Since $F_{\nu}(s) \leq 2 f(s, c, \ldots, c)$ and

$$
\begin{aligned}
& F_{\nu}(s) \leq A\left\{\left|x_{\nu}(s)-x_{0}(s)\right|+\sum_{i=1}^{n} \mid x_{\nu}\left(\Delta_{i}\left(s, x_{\nu}(s)-x_{0}\left(\Delta_{i}\left(s, x_{0}(s)\right)\right) \mid\right\} \leq\right.\right. \\
& A\left\{\left\|x_{\nu}(s)-x_{0}(s)\right\|+\sum_{i=1}^{n}\left[\mid x_{\nu}\left(\Delta_{i}\left(s, x_{\nu}(s)-x_{\nu} \Delta_{i}\left(s, x_{0}(s)\right)\right)|+| x_{\nu}\left(\Delta_{i}\left(s, x_{0}(s)\right)\right)-\right.\right.\right. \\
& \left.\left.\left.x_{0} \Delta_{i}\left(s, x_{0}(s)\right)\right) \mid\right]\right\} \leq A\left\{\left\|x_{\nu}(s)-x_{0}(s)\right\|_{\sigma}(n+1)+f_{0} \sum_{i=1}^{n} \mid\left(\Delta_{i}\left(s, x_{\nu}(s)\right)\right)-\right. \\
& \left.\left.\Delta_{i}\left(s, x_{0}(s)\right)\right) \mid\right\} \leq A\left\{\left\|x_{\nu}(s)-x_{0}(s)\right\|_{\sigma}(n+1)+f_{0} \sum_{i=1}^{n} B_{i}\left|x_{\nu}(s)-x_{0}(s)\right|\right\} \\
& A\left(n+1+f_{0} \sum_{i=1}^{n} B_{i}\right)\left\|x_{\nu}-x_{0}\right\|_{\sigma} \rightarrow 0, \quad \nu \rightarrow \infty
\end{aligned}
$$

we conclude according to Lebesgue's dominated convergence theorem, that $\lim _{\nu \rightarrow \infty}$ $\left[\sup _{\left[T_{0}, \sigma\right]}\left|\left(\Phi x_{\nu}\right)(t)-\left(\Phi x_{0}\right)(t)\right|\right]=0$, i.e. $\Phi$ is a continuous operator.

By Schauder-Tykhonoff fixed point theorem [6, p. 9] it follows that there exists $y \in Y$ such that $y=\Phi y$ and the function $y=y(t)$ is a solution of (1) for $t \geq T_{1}$. Since $y^{\prime}(t)=-f\left(s, y(s), \ldots, y\left(\Delta_{n}(s, y(s))\right)\right)<0$ for $y \in Y$ and $y(t) \geq \delta$ for $t \geq T_{0}$, we obtain that there exists $\lim _{t \rightarrow \infty} y(t) \neq 0$.

Let $\gamma=-1$. The proof is the same as above, but the operator $\Phi$ is defined by the formula

$$
(\Phi x)(t)=\left\{\begin{array}{lr}
\delta, & t \in\left[T_{0}, T_{1}\right] \\
\left.\delta+\int_{T_{1}}^{t} f\left(s, x(s), x\left(\Delta_{1}(s, x(s))\right)\right), \ldots, x\left(\Delta_{n}(s, x(s))\right)\right) d s, \quad t \geq T_{1}
\end{array}\right.
$$

Lemma 3 is proved.
Theorem 1. Let conditions of Lemma 3 hold. Then the condition

$$
\begin{equation*}
\int_{t_{0}}^{\infty}|f(t, c, \ldots, c)| d t=\infty, \quad \text { for any } c \neq 0 \tag{8}
\end{equation*}
$$

is necessary and sufficient

1) either for oscilation or for monotonous convergence to zero as $t \rightarrow \infty$ of all solutions of (1) when $\gamma=1$;
2) for oscilation of all bounded solutions of (1) when $\gamma=-1$.

Proof. Necessity. Suppose that (8) is false. Then (4) holds and according to Lemma 3 there exists a nonoscilatory solution of (1) which converges to a nonzero constant, which is a contradiction.

Sufficiency. Let (8) be true for any $c \neq 0$. Suppose that there exists a nonoscillatory solution $y(t)$ of (1) and let, for instance, $y(t)>0$ for $t \geq t_{1} \geq t_{0}$ when $\gamma=1$ and $0<y(t) \leq L$ for $t \geq t_{1} \geq t_{0}$ when $\gamma=-1$ ( $L=$ const).

Let $\gamma=1$. Then H1 and (1) imply that $y^{\prime}(t)>0$ for $t \geq t_{1}$ and there exists $\lim _{t \rightarrow \infty} y(t)=k$ for some $k=$ const $>0$. If we suppose that $k>0$ then by Lemma 3 we obtain (4), which is a contradiction.

Let $\gamma=-1$. Then H1 and (1) imply that $y^{\prime}(t)>0$ for $t \geq t_{1}$. Since $y(t)$ is bounded, then $\lim _{t \rightarrow \infty} y(t) \neq$ const $\neq 0$ and by Lemma 3 we obtain (4) which is a contradiction again.

Theorem 1 is thus proved.
Theorem 2. Let conditions $(H)$ hold, $Q(t) \equiv 0$ on $\left[t_{0}, \infty\right), f\left(t, u_{0}, \ldots, u_{n}\right)$ be bounded with respect to $t$ for every fixed $u_{i}$ and nondecreasing in $u_{i}(i=\overline{1, n}$. Then all bounded quickly oscillatory solutions of (1) tend to zero as $t \rightarrow \infty$.

Proof. Let $y(t)$ be a bounded quickly oscillatory solution of (1) such that $|y(t)| \leq L$ for $t \geq t_{1} \geq t_{0}$ and $L=$ const $>0$. In view of H 2 we can find $t_{2} \geq t_{1}$ so that $\Delta_{i}(t, y(t)) \geq t_{1}$ for $t \geq t_{2}(i=\overline{1, n})$ and hence $\left|y\left(\Delta_{i}(t, y(t))\right)\right| \leq L$ for $t \geq t_{2}$. Then

$$
f(t,-L, \ldots,-L) \leq f\left(t, y(t), \ldots, y\left(\Delta_{n}(t, y(t))\right) \leq f(t, L, \ldots, L) \quad \text { for } t \geq t_{2}\right.
$$

and from (1) it follows

$$
-f(t, L, \ldots, L) \leq y^{\prime}(t) \leq-f(t,-L, \ldots,-L) \text { when } \gamma=1
$$

and

$$
-f(t, L, \ldots, L) \leq y^{\prime}(t) \leq-f(t, L, \ldots, L) \text { when } \gamma=-1
$$

i.e. $y^{\prime}(t)$ is bounded. By Lemma $1 y(t) \rightarrow 0, t \rightarrow \infty$, and Theorem 2 is proved.

Theorem 3. Let conditions (H) hold, $Q(t) \equiv 0$ on $\left[t_{0}, \infty\right), f(t, \cdot, \ldots, \cdot)$ be nondecreasing and $\lim _{t \rightarrow \infty} \mid f(t, c, \ldots, c)=0$ for any fixed $c \neq 0$. Then all bounded moderately oscillatory solutions of (1) tend to zero as $t \rightarrow \infty$.

Proof. As in the proof of Theorem 2 we find

$$
\left.\begin{array}{c}
-f(t, L, \ldots, L) \\
f(t,-L, \ldots,-L)
\end{array}\right\} \leq y^{\prime}(t) \leq\left\{\begin{array}{c}
-f(t,-L, \ldots,-L), \quad \text { when } \gamma=1 \\
f(t, L, \ldots, L), \text { when } \gamma=-1
\end{array}\right.
$$

and hence $y^{\prime}(t) \rightarrow 0, t \rightarrow \infty$. By Lemma $2 y(t) \rightarrow 0, t \rightarrow \infty$, and Theorem 3 is proved.

Theorem 4. Let conditions (H) and (8) hold, $Q(t) \equiv 0$ on $\left[t_{0}, \infty\right)$ and $f(t)$ be either nondecreasing or nonincreasing. Then 1) each nonoscillatory solution of (1), for which $\inf _{t \geq t_{0}}|y(t)|>0$, is unbounded when $\gamma=1$;
2) each nonoscillatory solution of (1) is unbounded when $\gamma=-1$.

Proof. Suppose the contrary and let $0<y(t) \leq L$ for $t \geq t_{1} \geq t_{0}$ and $L=$ const $>0$. (The proof is similar when $-L \leq y(t)<0$ for $t \geq t_{1} \geq t_{0}$ ).

Let $\gamma=1$. Then there exist $l=$ const $>0$ and $t_{2} \geq t_{1}$ such that $y(t \geq l$ for $t \geq t_{2}$. Via H 2 we may find $t_{3} \geq t_{2}$ so that

$$
\begin{equation*}
l \leq y\left(\Delta_{i}(t, y(t))\right) \leq L \quad \text { for } t \geq t_{3} \quad(i=\overline{1, n}) \tag{9}
\end{equation*}
$$

Then (5) holds for $c=l$ when $f(t, \ldots)$ is nondecreasing and for $c=L$ when $f(t, \ldots)$ is nonincreasing. Integrating (1) from $t_{3}$ to $t$, using (5) and (9) and letting $t \rightarrow \infty$ we obtain the contradiction

$$
\begin{aligned}
l \leq y(t)=y\left(t_{3}\right) & -\int_{t_{3}}^{t} f\left(s, y(s), \ldots, y\left(\Delta_{n}(s, y(s))\right)\right) d s \leq y\left(t_{3}\right)- \\
& -\int_{t_{3}}^{t} f(s, c, \ldots, c) d s \rightarrow-\infty, t \rightarrow \infty .
\end{aligned}
$$

Thus $y(t)$ is unbounded.
Let $\gamma=-1$. From (1) via H1 we obtain that $y^{\prime}(t)>0$ for $t \geq t_{2} \geq t_{1}$. Since $y(t)>0$ for $t \geq t_{1}$ we may find $t_{3} \geq t_{2}$ and $l=$ const $>0$ so that $y(t) \geq l$ for $t \geq t_{3}$. Then as in the proof of the case when $\gamma=1$ we obtain the contradiction

$$
\begin{aligned}
L \geq y(t)=y\left(t_{3}\right) & +\int_{t_{3}}^{t} f\left(s, y(s), \ldots, y\left(\Delta_{n}(s, y(s))\right)\right) d s \geq y\left(t_{3}\right)+ \\
& +\int_{t_{3}}^{t} f(s, c, \ldots, c) d s \rightarrow \infty, t \rightarrow \infty
\end{aligned}
$$

So, $y(t)$ is unbounded and Theorem 4 is proved.
Now, we shall study the asymptotic behaviour of oscilatory solutions of (1) when $Q(t) \not \equiv 0$ for $t \geq t_{0}$ and $\gamma=1$.

Lemma 4. Let conditions (H) and (8) hold, $f(t, \cdot, \ldots, \cdot)$ be nondecreasing (nonincreasing), $Q(t) \not \equiv 0$ for $t \geq t_{0}$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty}|Q(t)| d t<\infty \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \inf |y(t)|=0 \tag{11}
\end{equation*}
$$

for all (all bounded) solutions of (1).
Proof. Let $f(t, \cdot, \ldots, \cdot)$ be nondecreasing and suppose there exists a nonoscilatory solution $y(t)$ of (1) such that $y(t) \geq l$ for $t \geq t_{1} \geq t_{0}$ and some $l=$ const $>0$ (The proof is similar when $y(t) \leq-l$ for $t \geq t_{1} \geq t_{0}$ ). Using H2 we obtain (5) for $t \geq t_{2} \geq t_{1}$ and $c=l$. Integrating (1) from $t_{2}$ to $t$, using (5) and (10) and taking $t \rightarrow \infty$ we obtain the contradiction

$$
l \leq y(t) \leq y\left(t_{2}\right)+\int_{t_{2}}^{t}|Q(s)| d s-\int_{t_{2}}^{t} f(s, l, \ldots, l) d s \rightarrow-\infty, t \rightarrow \infty
$$

Let $f(t, \cdot, \ldots, \cdot)$ be nonincreasing and there exists a bounded nonoscillatory solution $y(t)$ of (1) such that $l \leq y(t) \leq L$ for $t \geq t_{1} \geq t_{0}$ and some $L>l>0$ (The proof is similar when $l<L<0$ ). As above, we obtain (5) for $c=L$ and $t \geq t_{2} \geq t_{1}$. Integrating (1) from $t_{2}$ to $t$, using (5) and allowing $t \rightarrow \infty$ we obtain the contradiction

$$
l \leq y(t) \leq y\left(t_{2}\right)+\int_{t_{2}}^{t}|Q(s)| d s-\int_{t_{2}}^{t} f(s, L, \ldots, L) d s \rightarrow-\infty, t \rightarrow \infty
$$

Lemma 4 is proved.
Theorem 5. If conditions $(\mathrm{H})$ and (10) hold, then:

1) Each oscillatory solution of (1), which does not change its sign, tends to zero as $t \rightarrow \infty$.
2) Each oscillatory solution of (1), which changes its sign, tends to zero as $t \rightarrow \infty$ if the following conditions are fulfilled:
a) $f(t, \cdot, \ldots, \cdot)$ is nondecreasing and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \mid f(t, c, \ldots, c) d t<\infty \quad \text { for any } c \neq 0 \tag{12}
\end{equation*}
$$

b) $\Delta_{i}(t, v) \leq t(i=\overline{1, n})$ for any fixed $v \in R$;
c) there exists the uniform on $t$ bound

$$
\begin{aligned}
\varphi(t)= & \lim _{|u| \rightarrow \infty} \frac{f(t, u, \ldots, u)}{u} \text { such that } \int_{t_{0}}^{\infty} \tilde{f}(t) d t<\infty \\
& \text { where } \tilde{f}(t) \geq \frac{f(t, u, \ldots, u)}{u} \text { for } u \neq 0
\end{aligned}
$$

Proof. First we will prove that all oscillatory solutions of (1) are bounded. Suppose the contrary, i.e. there exists an unbounded solution $y(t)$ of (1). Then we can find $t_{1} \geq t_{0}$ so that $\Delta_{i}(t, y(t)) \geq t_{0}(i=\overline{1, n})$ for $t \geq t_{1}$ and sets $\left\{\tau_{\mu}\right\}_{\mu=1}^{\infty} \subset$ $\left[t_{1}, \infty\right)$ and $\left\{\xi_{\nu}\right\}_{\nu=1}^{\infty} \subset\left(\tau_{1}, \infty\right)$ of zeros and extremal points of $y(t)$, respectively, with the properties: $\tau_{\mu} \rightarrow \infty, \mu \rightarrow \infty ; \xi_{\nu} \rightarrow \infty, \nu \rightarrow \infty$, and if $M_{\nu}=\left|y\left(\xi_{\nu}\right)\right|$, then sup $|y(t)| \leq M_{1} \leq M_{1} \leq \ldots$ and $M_{\nu} \rightarrow \infty, \nu \rightarrow \infty$, (the index $\mu$ may be greater [ $\left.t_{0}, t_{1}\right]$
than the index $\nu$, since sticknesses of $y(t)$ with the zero solution are possible).
Let $y(t)$ does not change its sign and let for instance, $y(t) \geq 0$ for $t \geq t_{0}$ (The proof is similar when $y(t) \leq 0$ for $\left.t \geq t_{0}\right)$. Via H 2 and H 1 (1) yields

$$
\begin{equation*}
y^{\prime}(t) \leq Q(t) \quad \text { for } t \geq t_{1} \tag{13}
\end{equation*}
$$

Integrating (13) from $\tau_{\mu}$ to $\xi_{\nu}$ and taking $\nu \rightarrow \infty$ we get the contradiction

$$
\infty>\int_{t_{0}}^{\infty}|Q(t)| d t \geq M_{\nu} \rightarrow \infty, \quad \nu \rightarrow \infty
$$

Let $y(t)$ change its sign and $\left(\tau_{\mu}, \tau_{\mu+1}\right) \ni \xi_{\nu}$ be its positive semicycle (The proof is similar when $\left(\tau_{\mu}, \tau_{\mu+1}\right)$ is a negative semicycle). Let $t_{1} \geq t_{0}$ be chosen so large that $\int_{t_{1}}^{\infty} \varphi(t) d t<1 / 2$. Since $y(t) \leq M_{\nu}$ and $M_{\nu} \geq\left|y\left(\Delta_{i}(t, y(t))\right)\right|(i=\overline{1, n})$ for $t \in\left(\tau_{\mu}, \tau_{\mu+1}\right)$, then

$$
f\left(t,-M_{\nu}, \ldots,-M_{\nu}\right) \leq f\left(t, y(t), \ldots, y\left(\Delta_{n}(t, y(t))\right)\right) \quad \text { for } t \in\left(\tau_{\mu}, \tau_{\mu+1}\right)
$$

Integrating (1) from $\tau_{\mu}$ to $\xi_{\nu}$, dividing by $M_{\nu}$ and tending $\nu \rightarrow \infty$ we obtain the contradiction

$$
\begin{aligned}
1 & \leq \frac{1}{M_{\nu}} \int_{\tau_{\mu}}^{\xi_{\nu}}|Q(t)| d t+\int_{\tau_{\mu}}^{\xi_{\nu}} \frac{f\left(t,-M_{\nu}, \ldots,-M_{\nu}\right)}{-M_{\nu}} d t \leq \\
& \leq \frac{1}{M_{\nu}} \int_{t_{0}}^{\infty}|Q(t)| d t+\int_{t_{1}}^{\infty} \frac{f\left(t,-M_{\nu}, \ldots,-M_{\nu}\right)}{-M_{\nu}} d t \underset{\nu \rightarrow \infty}{\longrightarrow} \int_{t_{1}}^{\infty} \varphi(t) d t<\frac{1}{2} .
\end{aligned}
$$

Thus, all oscilatory solutions of (1) are bounded. If we suppose that there exists an oscilatory solution $y(t)$ of (1) such that $\lim _{t \rightarrow \infty} \sup |y(t)|=2 m$ for some $m=$ const $>0$, then using H2 and (10) we can find numbers $t_{0} \leq t_{1} \leq \tau_{\nu}<\xi_{\nu}$ so, that $\Delta_{i}(t, y(t)) \geq t_{0}(i=\overline{1, n})$ for $t \geq t_{1}, \int_{t_{1}}^{\infty}|Q(T)| d t<m / 3 y\left(\tau_{\nu}\right)=0$ and $\left|y\left(\xi_{\nu}\right)\right|>m$.

Let $y(t)$ does not change its sign on $\left[t_{0}, \infty\right)$. As above we obtain (13). Integrating (13) from $\tau_{\nu}$ to $\xi_{n} u$ and having in mind the above assumptions, we obtain the contradiction

$$
m \leq \int_{t_{1}}^{\xi_{\nu}}|Q(t)| d t \leq \int_{t_{1}}^{\infty}|Q(T)| d t<\frac{m}{3}
$$

Let $y(t)$ change its sign on $\left[t_{0}, \infty\right)$ and $y\left(\xi_{\nu}\right)>0$ (The proof is similar when $\left.y\left(\xi_{\nu}\right)<0\right)$. Let $t_{1}$ be chosen so large that

$$
\int_{t_{1}}^{\infty}|f(t,-2 m, \ldots,-2 m)| d t<\frac{m}{3} .
$$

Integrating (1) from $\tau_{\nu}$ to $\xi_{n} u$ and using the assumptions on $f$ and $Q$ we obtain the contradiction

$$
\begin{gathered}
m \leq \int_{\tau_{\nu}}^{\xi_{\nu}}|Q(t)| d t-\int_{\tau_{\nu}}^{\xi_{\nu}} f(t,-2 m, \ldots,-2 m) d t \leq \int_{t_{1}}^{\infty}|Q(T)| d t+ \\
+\int_{t_{1}}^{\infty}|f(t,-2 m, \ldots,-2 m)| d t<\frac{2 m}{3}
\end{gathered}
$$

Theorem 5 is thus proved.
Theorem 6. Let conditions (H) and (12) hold, $f(t, \ldots)$ be nondecreasing, $Q(t) \mid>0$ on $\left[t_{0}, \infty\right)$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty}|Q(t)| d t=\infty \tag{14}
\end{equation*}
$$

Then all oscillatory solutions of (1) are unbounded.
Proof. Let $Q(t)>0$ on $\left[t_{0}, \infty\right)$ (The proof is similar when $Q(t)<O$ for $t \geq t_{0}$ ) and there exists a bounded oscillatory solution $y(t)$ of (1) such that

$$
|y(t)| \leq c \text { for } t \geq t_{1} \geq t_{0} \text { and }\left|y\left(\Delta_{i}(t, y(t))\right)\right| \leq c(i=\overline{1, n}) \text { for } t \geq t_{2} \geq t_{1}
$$

for some $c>0$. Then $f\left(t, y(t), \ldots, y\left(\Delta_{n}(t, y(t))\right)\right) \leq f(t, c, \ldots, c)$ for $t \geq t_{2}$ and integrating (1) from $t_{2}$ to $t$ and using (12) and (14), we obtain the contradiction $c \geq y(t) \geq y\left(t_{2}\right)+\int_{t_{2}}^{t} Q(s) d s-\int_{t_{2}}^{t} f(s, c, \ldots, c) d s \rightarrow \infty, t \rightarrow \infty$.

Theorem 6 is proved.
Now we will obtain sufficient conditions for nonocillation of all solutions of (1) and we will study their asymptotic behaviour.

Theorem 7. Let conditions $(\mathrm{H})$ and (14) hold, $\mid Q(t)>0$ on $\left[t_{0}, \infty\right)$ and conditions a) -c) of Theorem 5 be fulfilled. Then all solutions of (1) are nonoscillatory.

Proof. Let $Q(t)>0$ on $\left[t_{0}, \infty\right)$ (The proof is similar when $Q(t)<O$ on $\left[t_{0}, \infty\right)$ ). Suppose there exists an oscillatory solution $y(t)$ of (1). According to Theorem 6, $y(t)$ is unbounded.

Let $t_{1}$ be a zero of $y(t)$ such that $\Delta_{i}(t, y(t)) \geq t_{0}(i=\overline{1, n})$ for $t \geq t_{1}$ and $\int_{t_{1}}^{\infty} \varphi(t) d t<\frac{1}{2}$. As in the proof of the first part of Theorem 5 we obtain that $f\left(t, y(t), \ldots, y\left(\Delta_{n}(t, y(t))\right)\right) \leq f\left(t, M_{\nu}, \ldots, M_{\nu}\right)$ for $t \in\left(\tau_{\mu}, \tau_{\mu+1}\right)$.

Integrating (1) from $\xi_{\nu}$ to $\tau_{\mu+1}$, dividing by $M_{\nu}$ and taking $\nu \rightarrow \infty$ we get the contradiction

$$
1 \leq \int_{\xi_{\nu}}^{\tau_{\mu+1}} \frac{f\left(t, M_{\nu}, \ldots, M_{\nu}\right)}{M_{\nu}} d t \leq \int_{t_{1}}^{\infty} \frac{f\left(t, M_{\nu}, \ldots, M_{\nu}\right)}{M_{\nu}} d t \underset{\nu \rightarrow \infty}{\longrightarrow} \int_{t_{1}}^{\infty} \varphi(t) d t<\frac{1}{2}
$$

Theorem 7 is proved.
Corollary 1. Let conditions of Theorem 7 hold. Then all solutions of (1) are positive (negative) and unbounded ahore (below) when $Q(t)>0(<0)$ on $\left[t_{0}, \infty\right)$.

Proof. Let $Q(t)>0$ on $\left[t_{0}, \infty\right)$ (The proof is similar when $Q(t)<O$ on $\left[t_{0}, \infty\right)$ ). According to Theorem 7, all solutions of (1) are nonoscillatory. Suppose there exists a solution $y(t)<O$ for $t \geq t_{1} \geq t_{0}$ of (1). From H1 and (1) we obtain $y^{\prime}(t) \geq Q(t)$ for $t \geq t_{1}$. Integrating this inequality from $t_{1}$ to $t$ and taking $t \rightarrow \infty$ we obtain the contradiction

$$
0>y(t) \geq y\left(t_{1}\right)+\int_{t_{1}}^{t} Q(s) d s \underset{\nu \rightarrow \infty}{\longrightarrow} y\left(t_{1}\right)+\int_{t_{1}}^{\infty} Q(s) d s=\infty .
$$

Thus all solutions of (1) are positive.
Suppose that $0<y(t) \leq M$ for $t \geq t_{2} \geq t_{1}$ and some $M=$ const $>0$. Then $y\left(\Delta_{i}(t, y(t))\right) \geq M$ for $t \geq t_{2} \geq t_{1}(i=\overline{1, n})$ and hence $f\left(t, y(t), \ldots, y\left(\Delta_{n}(t, y(t))\right)\right) \leq f\left((t, M, \ldots, M)\right.$ for $t \geq t_{2}$. Integrating (1) from $t_{2}$ to $t$ using (12) and (14) we obtain the contradiction

$$
M \geq \nu(t) \geq y\left(t_{2}\right)+\int_{t_{2}}^{t} Q(s) d s-\int_{t_{2}}^{t} f(s, M, \ldots, M) d s \rightarrow \infty, t \leq \infty
$$

Corollary 1 is established.
Theorem 8. Let conditions (H) and (14), $|Q(t)|>0$ for $t \geq t_{0}$ and $f(t, \cdot, \ldots, \cdot)$ be nonincreasing. If for any $c>0$

$$
\begin{align*}
& \int_{t_{0}}^{\infty}[Q(t)-f(t, c, \ldots, c)]=-\infty \quad \text { when } Q(t)>0  \tag{15}\\
& \left(\int_{t_{0}}^{\infty}[Q(t)-f(t,-c, \ldots,-c)] d t=\infty \quad \text { when } Q(t)>0\right)
\end{align*}
$$

then all nonoscillatory solutions of (1) are positive (negative) and unbounded above (below).

Proof. As in the proof of the first part of Corollary 1 we establish that the nonoscilatory solutions of (1) are positive. Suppose that $y(t) \leq M$ for $t \geq t_{1} \geq t_{0}$ and $M=$ const $>0$. Then $y\left(\Delta_{i}(t, y(t))\right) \leq M(i=\overline{\overline{1}, n})$ and $\left.f\left(t, y(t), \ldots, y \Delta_{n}(t, y(t))\right)\right) \geq f(t, M, \ldots, M)$ for $t \geq t_{2} \geq t_{1}$. Integrating (1) from $t_{2}$ to $t$, tending $t \rightarrow \infty$ and using (15) we get

$$
0<y(t) \geq y\left(t_{2}\right)+\int_{t_{2}}^{t}[Q(s)-f(s, M, \ldots, M)] d s \rightarrow-\infty, t \rightarrow \infty
$$

This contradiction proves Theorem 8.
For the equation

$$
\begin{equation*}
y^{\prime}(t)+\gamma f\left(t, y\left(\Delta_{1}(t, y(t))\right)\right)=Q(t), \quad t \geq t_{0} \in R, \gamma= \pm 1 \tag{16}
\end{equation*}
$$

which is a particular case of (1), the following theorem holds:
Theorem 9. In addition to (H2) for $n=1$ and (10) suppose:

1. $f(t, u) \in C\left(\left[t_{0}, \infty\right) \times R\right), u f(t, u)>0$ for $u \neq 0$ and $t \geq t_{0}, f(t, \cdot)$ is either nondecreasing when $\gamma=-1$ and

$$
\begin{equation*}
0<\inf _{t>t_{0}}|f(t, u)| \leq \sup _{t \geq t_{0}}|f(t, u)|<\infty \quad \text { for any fixed } u \in R \tag{17}
\end{equation*}
$$

2. There exists the derivatives $\partial \Delta_{1}(t, v) / \partial t$ and $\partial \Delta_{1}(t, v) / \partial v$ and they are bounded and nonnegative.

Then all nonoscillatory solutions of (16), which are bounded, tend to zero as $t \rightarrow \infty$.

Proof. Let $y(t)>0$ for $t \geq t_{1} \geq t_{0}$ (The proof is similar when $y(t)<0$ for $t \geq t_{1} \geq t_{0}$ ). As in the proof of Lemma 2 we establish (11) for all bounded nonoscillatory solutions of (16). Then

$$
\begin{equation*}
\left.\lim _{t \rightarrow \infty} \inf \mid y(t, y(t))\right) \mid=0, \quad t \geq t_{2} \geq t_{1} \tag{18}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \left|y\left(\Delta_{1}(t, y(t))\right)\right|>m>0, \quad t \geq t_{2} \geq t_{1} \tag{19}
\end{equation*}
$$

In view of (18) and (19), there exists a sequence $\left\{\lambda_{\nu}\right\}_{\nu=1}^{\infty} \subset\left[t_{2}, \infty\right)$ with the following properties: $\lambda_{\nu} \rightarrow \infty, \nu \rightarrow \infty y\left(\Delta_{1}\left(\lambda_{n} u, y\left(\lambda_{\nu}\right)\right)\right)>m$ for all $\nu$ and there exists $\mu_{\nu} \in\left(\lambda_{\nu}, \lambda_{\nu+1}\right)$ such that $y\left(\Delta_{1}\left(\mu_{\nu}, y\left(\mu_{\nu}\right)\right)\right)<m / 2$ for $\nu \geq 1$.

Let $\alpha_{\nu}$ be the largest number less than $\lambda_{\nu}$ such that $m / 2=y\left(\Delta_{1}\left(\alpha_{\nu}, y\left(\alpha_{\nu}\right)\right)\right)$ and $\beta_{\nu}$ be the smallest number greater than $\lambda_{\nu}$ such that $m / 2=y\left(\Delta_{1}\left(\beta_{\nu}, y\left(\beta_{\nu}\right)\right)\right)$ for $\nu \geq 1$. Now in the interval $\left[\alpha_{\nu}, \lambda_{\nu}\right]$ there exists $\gamma_{\nu}$ such that

$$
\begin{align*}
& y^{\prime}\left(\Delta_{1}\left(\gamma_{\nu}, y\left(\gamma_{\nu}\right)\right)\right)\left[\frac{\partial \Delta_{1}\left(\gamma_{\nu}, y\left(\gamma_{n} u\right)\right)}{\partial t}+\frac{\partial \Delta_{1}\left(\gamma_{\nu}, y\left(\gamma_{n} u\right)\right)}{\partial v} y^{\prime}\left(\gamma_{\nu}\right)\right]=  \tag{20}\\
& =\frac{y\left(\Delta_{1}\left(\lambda_{\nu}, y\left(\lambda_{\nu}\right)\right)\right)-y\left(\Delta_{1}\left(\alpha_{\nu}, y\left(\alpha_{\nu}\right)\right)\right)}{\lambda_{\nu}-\alpha_{\nu}}>\frac{m-m / 2}{\beta_{\nu}-\alpha_{\nu}}=\frac{m}{2\left(\beta_{\nu}-\alpha_{\nu}\right)}
\end{align*}
$$

by the mean value theorem.
But in view of (16), (10) and condition 1 of Theorem 9 we obtain that $y^{\prime}(t)$, and hence $v^{\prime}\left(\Delta_{1}(t, y(t))\right)$, are bounded for $t>t_{2}$. Then via condition 2 of Theorem 9 we obtain the estimate

$$
\begin{equation*}
\beta_{n} u-\alpha_{\nu}>M \text { for } \nu \geq 1, M=\text { const }>0 \tag{21}
\end{equation*}
$$

On the other hand, $y\left(\Delta_{1}(t, y(t))\right) \geq m / 2$ on $\left[\alpha_{\nu}, \beta_{\nu}\right]$ because of the way $\alpha_{\nu}$ and $\beta_{\nu}$ were chosen. Denote $u=\bigcup_{\nu=1}^{\infty}\left[\alpha_{\nu}, \beta_{\nu}\right]$. Then

$$
\begin{equation*}
\left.f\left(t, y\left(\Delta_{1}(t, y)\right)\right)\right) \geq f(t, m / 2) \quad \text { for } t \in u \tag{22}
\end{equation*}
$$

when $f(t, \cdot)$ is nondecreasing (The proof is similar when $f(t, \cdot)$ is nonincreasing).
If we suppose that $\int_{t_{2}}^{\infty} f\left(t, y\left(\Delta_{1}(t, y(t))\right)\right) d t=\infty$, then from (16) using (10) we obtain the contradiction

$$
0<y(t) \leq y\left(t_{2}\right)+\int_{t_{2}}^{t}|Q(s)| d s-\int_{t_{2}}^{t} f\left(s, y\left(\Delta_{1}(s, y(s))\right)\right) d s \rightarrow-\infty, \quad t \rightarrow \infty
$$

Thus $\int_{t_{2}}^{\infty} f\left(s, y\left(\Delta_{1}(s, y(s))\right)\right) d s<\infty$. Using (21) and (22) we get

$$
\begin{gathered}
\int_{t_{2}}^{\infty} f\left(s, y\left(\Delta_{1}(s, y(s))\right)\right) d s \geq \int_{u} f\left(s, y\left(\Delta_{1}(s, y(s))\right)\right) d s \geq \int_{u} f(s, m / 2) d s= \\
\sum_{\nu=1}^{\infty} \int_{\alpha_{\nu}}^{\beta_{\nu}} f(s, m / 2) d s>\sum_{\nu=1}^{\infty} f_{0}\left(\beta_{\nu}-\alpha_{\nu}\right)>f_{0} M \lim _{n \rightarrow \infty} \sum_{\nu=1}^{n} \nu=\infty
\end{gathered}
$$

where $f_{0}=\inf t \geq t_{2} f\left(t, \frac{m}{2}\right)$.
This contradiction proves Theorem 9.
Remark. Theorem 9 is proved by the techniquc of Chen [3].
We note that sufficient conditions for oscillation of sclutions of first order fuctional differential equations have been obtained in $[\mathbf{1}, \mathbf{2}, \mathbf{7 - 1 1}, \mathbf{1 5}]$ and in the papers cited in $[\mathbf{7}, \mathbf{1 5}]$. Asymptotic behaviour of oscillatory and nonoscillatory solutions of cited equations is not studied yet.

Finally we shall apply Theorems 1,2 and 4 to the equations (2) and (3).
Consider equation (2). It is a particular case of (1) with $\gamma=1, f(t, u)=a u$ and $\Delta(t, v)=t-r(v)$. If $r(v)$ is Lipschitzian and $r(v) \geq r(\bar{v})$ for $|v| \leq|\bar{v}|$ then all solutions of (2) are either oscillatory or tend monotonously to zero as $t \rightarrow \infty$ according to Theorem 1. By Theorem 2 all bounded quickly oscillatory solutions of (2) tend to zero as $t \rightarrow \infty$ and by Theorem 4 every nonoscillatory solution $y(t)$ of (2), for which $\inf _{t \geq t_{0}}|y(t)|>0$, is unbounded.

Consider equation (3). It is a particular case of (1) with $\gamma=-1, f(t, u)=a u$ and $\Delta(t, v)=t-h(t, v)$. If $h(t, \cdot)$ is Lipschitzian and $h(t, v) \geq h(t, \bar{v})$ for $|v| \leq$ $|\bar{v}|$ then according to Theorem 1 all bounded solutions of (3) are oscillatory, by Theorem 2 all bounded quickly oscillatory solutions of (3) tend to zero as $t \rightarrow \infty$ and by Theorem 4 all nonoscillatory solutions of (3) are unbounded.

## REFERENCES

[1] C. Anderson, Asymptotic oscillation results for solutions to first order nonlinear differential difference equations of advanced type, J. Math. Anal. Appl. 24 (1968), 430-439.
[2] Ja. Bykov, A. Matakev, Oscilation properties of first order functional differential equations, Issled. Integro-diff. equat., Ilim-Frunze, 1979, 22-28 (in Russian).
[3] L. Chen, On the nonscillatory Properties of solutions of a functional differential equation, Bull. Soc. Math. Grece 17 (1976), 11-19.
[4] K. Cooke, Functional differential systems: Some models and perturbation problems, Int. Symp. Differ. Equat. Dynamic Syst., Academic Press, New York, 1965, 167-188.
[5] K. Cooke. Asymptotic theory for a delay differential equation $u^{\prime}=-a u(t-r(u(t)))$, J. Math. Anal. Appl. 19 (1967), 160-173.
[6] W. Coppel, Stability and Asimptotie Behaviour of Differential Equations, Heath, Boston, 1965.
[7] Y. Kitamura, T. Kusano, Oscillatian of first order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc. 78 (1980), 64-68.
[8] R. Koplatadze, On monotonous solutions of first order nonlinear differential eyrrutions with a retarded argument, Proc. Inst. Appl. Math. I. N. Vecua 8 (1980j. 24-27 (in Russian).
[9] H. Onose, Oscillation of functional differential equation arising from an industrial problenr, J. Austral. Math. Soc. (A) 26 (1978), 323-329.
[10] C. Ladde, Class of functional equations with applications, Nonlin. Anal. TMA 2 (1978), 259-261.
[11] Ja. Pessin, On the behaviour of solutions of a strongly nonlinear differential equation with delay, Differ. Equat. 10 (1974), 1025-1036 (in Russian).
[12] Ch. Philos, V. Staikos, Quick oscillations with damping, Techn. Report, Univ. Ioanina 94 (1977), 1-12.
[13] Ch. Philos, V. Staikos, Non-slow oscillations with dumping, Techn. Report, Univ. Ioanina 92 (1977), 1-14.
[14] B. Stephan, Asymptotic behaviour of a functinal differential equation with bounded lag, SIAM J. Appl. Math. 17 (1969), 272-279.
[15] L. Tomaras, Oscillatory behaviour of first order delay differential equations, Bull. Austral. Math. Soc. 19 (1978), 183-190.

