PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 39 (53), 1986, pp. 107–118

CERTAIN APPLICATIONS OF DIFFERENTIAL SUBORDINATION

K. S. Padmanabhan and R. Manjini

Abstract. Let A denote the class of functions f regular in the unit disc E, such that f(0) = 0 = f'(0) - 1. Let $k_a(z) = z/(1-z)^a$ where a is a real number. We denote by $K_a(h)$ the class of functions $f \in A$ satisfying $1 + \frac{z(k_a * f)''(z)}{(k_a * f)'(z)} \prec h(z)$, where h is a convex univalent function in E with h(0) = 1 and $\operatorname{Re}(h(z)) > 0$. Several properties of the class $K_a(h)$ are investigated. Certain allied classes are also studied.

Let $E = \{z \in C : |z| < 1\}$ and H(E) be the set of all functions holomorphic in E. Let $A = \{f \in H(E) : f(0) = 0 = f'(0) - 1\}$. By f * g we denote the Hadarnard product or convolution of $f, g \in H(E)$. That is, if $f(z) = \sum_{0}^{\infty} a_n z^n$, $g(z) = \sum_{0}^{\infty} b_n z^n$, then $(f * g)(z) = \sum_{0}^{\infty} a_n b_n z^n$.

Let g and G be two functions in H(E). Then we say that g(z) is subordinate to G(z) (written $g(z) \prec G(z)$) if G(z) is univalent, g(0) = G(0) and $g(E) \subset G(E)$. Let $k_a(z) = z/(1-z)^a$, where a is any real number. From now on we assume, unless otherwise stated, $h \in H(E)$ is convex univalent in E and satisfies h(0) = 1and Re (h(z)) > 0 for $z \in E$.

Definition A. [2]. An infinite sequence $\{d_n\}_1^\infty$ of complex numbers is said to preserve property T if whenever $f(z) = \sum_{1}^{\infty} a_n z^n$ possesses property T, the convolution $J(z) = f(z) * \sum_{1}^{\infty} d_n z^n$ also possesses property T.

Definition B. [8]. Let $S_a(h)$ denote the class of functions $f \in A$ such that $\frac{z(k_a * f)'(z)}{k_a * f)(z)} \prec h(z)$, where $(k_a * f)(z)/z \neq 0$, for $z \in E$.

Definition C. [8]. Let $C_a(h)$ denote the class of functions $f \in A$ such that $\frac{z(k_a * f)'(z)}{k_a \varphi(z)} \prec h(z)$, for some $\varphi \in S_a(h)$.

When a = 1 and h(z) = (1 + z)/(1 - z), the classes $S_a(h)$, $C_a(h)$ reduce to the familiar classes S^* (starlike univalent functions), C (close-to-convex functions) respectively. We need the following five lemmas in the sequel.

AMS Subject Classification (1980): Primary 30C45.

LEMMAA. [3]. Let $\beta, \gamma \in C$, let $h \in H(E)$ be convex uniralent in E with h(0) - 1 and $\operatorname{Re} (\beta h(z) + \gamma) > 0$, $z \in E$, and let $p \in H(E)$, $p(z) = 1 + p_1 z + \dots$. Then

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z)$$

implies that $p(z) \prec h(z)$.

LEMMA B. [8]. Suppose $f \in S_a(h)$ and

(1)
$$F(z) = \frac{\gamma+1}{z^{\gamma}} \int_{0}^{x} t^{\gamma-1} f(t) dt = \sum_{n=1}^{\infty} \left(\frac{\gamma+1}{\gamma+n}\right) a_n z^n.$$

where $\operatorname{Re} \gamma > 0$ and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then $F \in S_a(h)$, provided $(k_a * F)(z)/z \neq 0$ for $z \in E$.

LEMMA C. [8] Suppose $f \in C_a(h)$ with respect to the function $\varphi \in S_a(h)$. Define φ by $\varphi(z) = (\varphi * h_{\gamma})(z)$, where $h_{\gamma}(z) = \sum_{n=1}^{\infty} \left(\frac{\gamma+1}{\gamma+n}\right) z^n$. Then F(z), defined by (1), is in $C_a(h)$ with respect to φ provided $(k_a * \varphi)z/z \neq 0$ for $z \in E$.

LEMMA D. [4 p. 12]. Suppose that $h(z) = \sum_{2}^{\infty} h_n z^n$ is convex univalent and maps |z| < 1 onto D. Let $\omega = g(z) = \sum_{1}^{\infty} g_n z^n$ be regular in |z| < 1 and assume there are only values ω which lie in D. Then $|g_n| \leq |h_1|$ and in particular $|h_n| \leq |h_1|$ for $n \geq 1$.

LEMMA E. [1]. Let $\varphi \in K$, the class of convex univalent functions, $g \in S^*$ and $F \in H(E)$ such that $\operatorname{Re} F > 0$. Then $(\varphi * Fg)/(\varphi * g)$ lies in the convex hull of F(E).

For $F \in A$ and $k_a(z) = z/(1-z)^a$, a is any real number, we have the following easily verified result:

(2)
$$z(k_a * f)'(z) = a(k_{a+1} * f)(z) - (a-1)(k_a * f)(z).$$

Definition 1. Let $K_a(h)$ denote the class of functions $f \in A$ such that

$$1 + \frac{z(k_a * f)''(z)}{(k_a * f)'(z)} \prec h(z), \quad \text{whwre } (k_a * f)'(z) \neq 0 \text{ for } z \in E$$

Remark 1. If a = 1 and h(z) - (1 + z)/(1 - z), then $K_a(h) = K$, the class of convex univalent functions.

THEOREM 1. If $f \in K_{a+1}(h)$, then $f \in K_a(h)$ for $a \ge 1$.

Proof. Let $p(z) = \frac{z(k_a * f)''(z)}{(k_a * f)'(z)}$. Differentiating (2), we get

$$p(z) + (a - 1) = a \frac{(k_{a+1} * f)'(z)}{(k_a * f)'(z)}.$$

108

Taking logarithmic derivatives and multiplying by z, we get

$$\frac{zp'(z)}{p(z)+(a-1)} = \frac{z(k_{a+1}*f)''(z)}{(k_{a+1}*f)'(z)} - \frac{z(k_a*f)''(z)}{(k_a*f)'(z)},$$

which gives

(3)
$$1 + \frac{z(k_{a+1} * f)''(z)}{k_{a+1} * f)'(z)} = \frac{zp'(z)}{p(z) + (a-1)} + p(z)$$

If $f \in K_{a+1}(h)$, from (3) we have

$$\frac{zp'(z)}{p(z) + (a-1)} + p(z) \prec h(z).$$

From Lemma A it follows that $p(z) \prec h(z)$ for $a \ge 1$; that is, $1 + \frac{z(k_a * f)''(z)}{(k_a * f)'(z)} \prec h(z)$, which means $f \in K_a(h)$ for all $a \ge 1$.

THEOREM 2. Suppose $f \in K_a(h)$ and F is defined by (1). Then $F \in K_a(h)$ provided $(k_a * F)'(z) \neq 0$ for $z \in E$.

Proof. We have $zF'(z) + \gamma F(z) = (\gamma + 1)f(z)$ and so

$$(k_a * (zF'))(z) + \gamma(k_a * F)(z) = (\gamma + 1)(k_a * f)(z).$$

Using the fact

(4)
$$z(k_a * F)'(z) = (k_a * zF')(z),$$

we obtain

(5)
$$z(k_a * F)'(z) + \gamma(k_a * F)(z) = (\gamma + 1)(k_a * f)(z).$$

Let $p(z) = 1 + \frac{z(k_a * F)''(z)}{(k_a * F)'(z)}$. Differentiating (5), we get

$$p(z) + \gamma = (\gamma + 1)\frac{(k_a * f)'(z)}{(k_a * F)'(z)}$$

and so we have

(6)
$$\frac{zp'(z)}{p(z)+\gamma} + p(z) = 1 + \frac{z(k_a * f)''(z)}{(k_a * f)'(z)}.$$

We conclude, if $f \in K_a(h)$, from (6) and Lemma A that $p(z) \prec h(z)$. Thus $F \in K_a(h)$.

COROLLARY 2.1. For every γ with $\operatorname{Re} \gamma > 0$, the sequence $\{(\gamma + 1)/(\gamma + n)\}$ preserves the property $f \in K_a(h)$.

Proof. Corollary follows from Definition A with $d_n = (\gamma + 1)/(\gamma + n)$.

Remark 2. If a = 1 and h(z) = (1 + z)/(1 - z), we deduce Theorem 2 and Corollary 2.1 of Bernardi [2] from the above theorem and its corollary.

THEOREM 3. (i) $f \in K_a(h)$ if and only if $zf' \in S_a(h)$. (ii) If $f \in K_a(h)$, then $f \in S_a(h)$; that is, $K_a(h) \subset S_a(h)$.

Proof. Using (4) we find that

$$\frac{z(k_a * zf)'(z)}{(k_a * zf')(z)} = 1 + \frac{z(k_a * f)''(z)}{(k_a * f)'(z)},$$

which implies (i).

(7) Let
$$p(z) = \frac{z(k_a * f)'(z)}{(k_a * f)(z)}$$
. Then
 $p(z) + \frac{zp'(z)}{p(z)} = 1 + \frac{z(k_a * f)''(z)}{(k_a * f)'(z)}$.

If $f \in K_a(h)$, then $f \in S_a(h)$ by (7) and Lemma A.

Remark 3. If a = 1 and h(z) = (1 + z)/(1 - z), then part (i) reduces to the well-known result that zf' is starlike if and only if f is convex, and part (ii) reduces to the well-known result that the class of convex univalent functions is contained in the class of starlike univalent functions.

COROLLARY 3.1. If
$$f \in S_a(h)$$
, then $\int_0^z \frac{\gamma+1}{\gamma+n} \left[\int_0^t x^{\gamma-1} f(x) dx \right] dt$ is in $K_a(h)$.

Proof. Let $f \in S_a(h)$. Then $\frac{\gamma+1}{\gamma^z} \int_0^z x^{\gamma-1} f(x) dx$ is in $S_a(h)$ by Lemma B. By part (i) of Theorem 3 there is a function $g \in K_a(h)$ such that zg'(z) =

 $\frac{\gamma+1}{\gamma^z} \int_0 x^{\gamma-1} f(x) dx$ which implies the result of the corollary.

COROLLARY 3.2. If $f \in K_a(h)$ and $h(z) = (\gamma + 1)f(z) - \gamma F(z)$, where F is defined by (1), then $h \in S_a(h)$.

Proof. Let $f \in K_a(h)$. Then by Theorem 2 we have $F \in K_a(h)$. By part (i) of Theorem 3, $zF' \in S_a(h)$. But $zF'(z) = (\gamma + 1)f(z) - \gamma F(z)$. Hence the corollary.

THEOREM 4. Let $\varphi \in K$, $g \in S_a(h)$. Then $\varphi * g \in S_a(h)$.

Proof. Let $F = \frac{z(k_a * g)'(z)}{(k_a * g)(z)}$ so that $F \prec h$. Now

$$\frac{z(k_a * \varphi * g)'(z)}{(k_a * \varphi * g)(z)} = \frac{z(\varphi * (k_a * g))'(z)}{(\varphi * (k_a * g))(z)} = \frac{(\varphi * z(k_a * g)')(z)}{(\varphi * (k_a * g))(z)} = \frac{(\varphi * F(k_a * g))(z)}{(\varphi * (k_a * g))(z)}$$

Since $g \in S_a(h)$, $k_a * g \in S^*$ and it follows from Lemma E that $z(k_a * \varphi * g)'(z)/(k_a * \varphi * g)(z)$ lies in the convex hull of F(E). But $F \prec h$, where h is convex. So the convex hull of F(E) is a subset of h(E) and the conclusion follows.

COROLLARY 4.1. Let $\varphi \in K$, $f \in K_a(h)$. Then $\varphi * f \in K_a(h)$.

Proof. By Theorem 3, $f \in K_a(h)$ if and only if $zf' \in S_a(h)$. $z(\varphi * f)'(z) = (\varphi * zf')(z) \in S_a(h)$ by Theorem 4. Hence $\varphi * f \in K_a(h)$.

THEOREM 5. Let $f \in A$ and let h be continuous on the unit circle, besides ,satisfying the usual conditions. $f \in S_a(h)$ if and only if $(k * f)(z) \neq 0, z \neq 0$, and

(8)
$$f(z) * \frac{z[1 - h(x) + (a + h(x))z]}{(1 - z)^{a+1}} \neq 0, \quad 0 < |z| < 1, \ |x| = 1.$$

Proof. Let $f \in A$ satisfy $(k_a * f)(z) \neq 0$, $z \neq 0$ and (8). Put $g(z) = (k_a * f)(z)$. Then $g(z) \neq 0$ for 0 < |z| < 1. We can rewrite (8) as

(9)
$$G(z) = \frac{(k_{a+1} * f)(z)}{(k_a * f)(z)} \neq \frac{a-1}{a} + \frac{1}{a}h(x), \quad |x| = 1, \ z \in E.$$

From (2) we get

(10)
$$G(z) = \frac{a-1}{a} + \frac{1}{a} \frac{zg'(z)}{g(z)}, \quad z \in E.$$

(9) and (10) imply $zg'(z)/g(z) \neq h(x)$, |x| = 1, $z \in E$. $zg'(z)/g(z)|^{z=0} = 1 \in h(E)$. Also zg'(z)/g(z) is analytic in E and so maps E onto a region which conttains 1 and is a subset of h(E). Therefore $zg'(z)/g(z) \prec h(z)$. Hence $f \in S_a(h)$.

Conversely, $f \in S_a(h)$ implies $zg'(z)/g(z) \prec h(z), z \in E$ and so $zg'(z)/g(z) \neq h(x)$, $|x| = 1, z \in E$. By retracing the steps we obtain the converse.

Definition 2. Let $K_a^{\alpha}(h)$, α be any real number, denote the class of functions $f \in A$ such that

$$J_a(\alpha; f(z)) = \alpha \left(1 + \frac{z(k_a * f)''(z)}{(k_a * f)'(z)} \right) + (1 - \alpha) \frac{z(k_a * f)'z}{(k_a * f)(z)} \prec h(z)$$

with $(k_a * f)(z)/z \neq 0$ and $(k_a * f)'(z) \neq 0$ for $z \in E$.

Remark 4. When a = 1 and h(z) = (1 + z)/(1 - z), $K_a^{\alpha}(h)$ is the class of all α -convex functions introduced by Mocanu [6].

For $\alpha = 1$, the class $K_a^{\alpha}(h)$ coincides with the class $K_a(h)$; and for $\alpha = 0$, it reduces to the class $S_a(h)$. Thus the sets $K_a^{\alpha}(h)$ give a "continuous" passage from the class $K_a(h)$ to the class $S_a(h)$.

THEOREM 6. (i) If $f \in K_a^{\alpha}(h)$, then $f \in K_a^0(h) = S_a(h)$ for $\alpha > 0$. (ii) For $\alpha > \beta \ge 0$. $K_a^{\alpha}(h) \subset K_a^{\beta}(h)$.

Proof. (i) Let $p(z) = \frac{z(k_a * f)'(z)}{(k_a * f)(z)}$. Then, using (7), we find that $J_a(\alpha; f(z)) = \alpha z p'(z) + p(z)$. If $f \in K_a^{\alpha}(h)$, then, by Lemma A, we have $p(z) \prec h(z)$ if $\alpha > 0$. That is, $f \in K_a^0(h) = S_a(h)$ for $\alpha > 0$.

(ii) If $\beta = 0$, then this statement reduces to (i). Hence we assume that $\beta \neq 0$. Suppose $f \in K_a^{\alpha}(h)$. Then $J_a(\alpha; f(z)) \prec h(z)$. Let z_1 be arbitrary point in E. Then

(11)
$$J_a(\alpha; f(z_1)) \in H(E)$$

Also, by part (i) $\frac{z(k_a * f)'(z)}{(k_a * f)(z_1)} \in h(z)$; so we have

(12)
$$\frac{z_1(k*f)'(z_1)}{(k_a*f)(z_1)} \in H(E).$$

Now

$$J_a(\beta; f(z)) = \left(1 - \frac{\beta}{\alpha}\right) \frac{z(k_a * f)'(z)}{(k_a * f)(z)} + \frac{\beta}{\alpha} J_a(\alpha; f(z)).$$

Since $\beta/\alpha < 1$ and h(E) is convex, $J_a(\beta; f(z_1)) \in H(E)$ by (11) and (12). Therefore $J_a(\beta; f(z)) \prec h(z)$. That is, $f \in K_a^\beta(h)$.

Remark 5. If a = 1 and h(z) = (1+z)/(1-z), then the first part of Theorem 6 reduces to the result due to Mocanu and Reade [7] that all α -convex functions are starlike and the second part of Theorem 6 reduces to a result of Sakaguehi [9].

THEOREM 7. (i) If
$$f \in K_a^{\alpha}(h)$$
, $F(z) = (k_a * f)(z) \left[\frac{z(k_a * f)'(z)}{(k_a * f)(z)} \right]^{\alpha}$, and if we

choose that branch of $\left[\frac{z(k_a * f)'(z)}{(k_a * f)(z)}\right]^{\alpha}$ which is equal to 1 at z = 0, then $F \in S_1(h)$.

(ii) If $F(z) = f \int_{0}^{z} [(k_a * f)(t)/t]^{1-\alpha} ((k_a * f)'(t))^{\alpha} dt$, then $F \in K_1(h)$ if and only if $f \in K_a^{\alpha}(h)$.

Proof. (i) From the definition, we have F(0) = 0, F'(0) = 1, and

$$zF'(z)/F(z) = J_a(\alpha; f'(z)) \prec h(z),$$

since $f \in K_a^{\alpha}(h)$. So $F \in S_1(h)$.

(ii) From the definition of F, we have

$$F'(z) = [(k_a * f)(z)/z]^{1-\alpha} ((k_a * f)'(z))^{\alpha}$$

and so $1 + zF''(z)/F'(z) = J_a(\alpha; f'(z))$. Hence $F \in K_1(h)$ if and only if $f \in K_a^{\alpha}(h)$.

Remark 6. If a = 1 and h(z) = (1 + z)/(1 - z), then part (i) reduces to a result of Mocanu [6] and part (ii) reduces to a result of Umezawa and Takijama [10].

Definition 3. Let $B_a(\alpha)$, $\alpha > 0$, be the class of functions $f \in A$ such that

$$f(z) = \left[\alpha \int_{0}^{z} (k_a * g)^{\alpha}(t) \frac{dt}{t}\right]^{1/\alpha}, \text{ where } g \in S_a(h).$$

THEOREM 8. If $f \in B_a(1/\alpha)$, $\alpha > 0$, then $f \in K_1^{\alpha}(h)$.

Proof. Let
$$f \in B_a(1/\alpha)$$
. Then $f(z) = \left[\frac{1}{\alpha} \int_0^z (k_a * g)^{1/\alpha}(t) \frac{dt}{t}\right]^{\alpha}$; so
 $J_1(\alpha; f(z)) = (1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)}\right) = \frac{z(k_a * g)'(z)}{(k_a * g)(z)} \prec h(z)$

since $g \in S_a(h)$. Hence $f \in K_1^{\alpha}(h)$.

Remark 7. If a = 1 and h(z) = (1+z)/(1-z), then the class $B_a(\alpha) = B(\alpha)$, the class of all Bazilevic functions of type a and Theorem 8 reduces to Theorem 1 of Miller, Mocanu and Reade [5].

Definition 4. If $f(z) \in S_a(h)$ and $\alpha = \alpha(f) = 1.$ u.b. $[\beta/f \in K_a^\beta(h), \beta \ge 0]$, then we say that f(z) is of type a in $S_a(h)$, and we write $f \in K(a, \alpha)$. We note that α is non-negative and may be infinite.

THEOREM 9. (i) $f \in K(a, \alpha)$ for $\alpha < \infty$ if and only if $f \in K_a^{\beta}(h)$ for all β , $0 \leq \beta \leq \alpha$ and $f \notin K_a^{\alpha}(h)$ for $\beta > \alpha$.

(ii) $S_a(h) = \bigcup_{\alpha \ge 0} K(a, \alpha)$, the sets $K(a, \alpha)$, $\alpha \ge 0$ being disjoint.

Proof. (i) If $f \in K(a, \alpha)$, then $J_a(\beta; f(z)) \prec h(z)$ holds for $z \in E$ and for all β , $0 < \beta < \alpha$. So $f \in K_a^\beta(h)$ for $0 \le \beta < \alpha$. By letting $\beta \to \alpha$ we note that $J_a(\alpha; f(z))$ lies in $\overline{h(E)}$ for all $z \in E$, where $\overline{h(E)}$ is the closure of H(E). Since $J_a(\alpha; f(z))$ is an analytic function in E, by open mapping theorem, the image of E by $J_G(\alpha; f(z))$ must be a region or a point. But $J_a(\alpha; f(z))$ is not a constant function because f(z) is not constant. Therefore, the range of $J_a(\alpha; f(z))$ must be a region and so $J_a(\alpha; f(z))$ lies in h(E) for all $z \in E$. That is, $J_a(\alpha; f(z)) \prec h(z)$. Hence $f \in K_a^{\alpha}(h)$.

The converse follows from the definition of $K(a, \alpha)$.

(ii) From the definition, we can write $S_a(h) = \bigcup_{\alpha \ge 0} K(a, \alpha)$. Since, by part (i), $K(a, \alpha) \neq K(a, \beta)$ if $\alpha \neq \beta$, the union is disjoint.

Example. Let $f(z) \equiv z$. From the definition of $J_a(\alpha; f(z))$ we find that $J_a(\alpha; z) \equiv 1$. Hence $J_a(\alpha, z) \prec h(z)$ for all $\alpha > 0$; that is, $f \in K_a^{\alpha}(h)$ for all $\alpha > 0$ and hence $f \in K(\alpha, \infty)$.

THEOREM 10. If $f \in K(a, \alpha)$, $\alpha > 0$, and if for $0 < \beta \le \alpha$, we choose the branch of $\left[\frac{z(k_a * f)'(z)}{(k_a * f)(z)}\right]^{\beta}$ which is equal to 1 when z = 0, then the function $F_{\beta}(z) = (k_a stf)(z) \left[\frac{z(k_a * f)'(z)}{(k_a * f)(z)}\right]^{\beta}, \quad 0 \le \beta \le \alpha,$

is in $S_1(h)$ for all β , $0 \leq \beta \leq \alpha$.

Proof. If $f \in K(a, \alpha)$, then, by part (i) of Theorem 9, we have $f \in K_a^{\beta}(h)$ for all β , $0 \leq \beta \leq \alpha$. By part (i) of Theorem 7, we have $F_{\beta}(z) \in S_1(h)$ for all β , $0 \leq \beta \leq \alpha$.

Remark 8. If a = 1 and h(z) = (1 + z)/(1 - z), then Theorem 10 reduces to Theorem 4 and Theorem 9 reduces to the remark before Theorem 4 of Miller, Mocanu and Reade [5].

Definition 5. Let $P_a(h)$ denote the class of functions $f \in A$ such that $(k_a * f)'(z) \prec h(z)$, for $z \in E$.

THEOREM 11. (i) If $f \in P_{a+1}(h)$, then $f \in P_a(h)$ holds for a > 0. (ii) If $f \in P_a(h)$ then $F \in P_a(h)$, where F is defined by (1).

Proof. (i) Let $p(z) = (k_a * f)'(z)$. Then, by (2), we have

$$zp(z) = a(k_{a+1} * f)(z) - (a-1)(k_a * f)(z);$$

and so

(13)
$$zp'(z)/a + p(z) = (k_{a+1} * f)'(z).$$

If $f \in P_{a+1}(h)$, then from (13) and Lemma A, it follows that for a > 0, $p(z) \prec h(z)$. That is, $f \in P_a(h)$ for all a > 0.

(ii) Let $p(z) = (k_a * F)'(z)$. From (5) we have

(14)
$$zp(z) + \gamma(k_a * F)(z) = (\gamma + 1)(k_a * f)(z).$$

Differentiating (14), we get

$$zp'(z)/(\gamma + 1) + p(z) = (k_a * f)'(z) \prec h(z),$$

since $f \in P_a(h)$. Then $F \in P_a(h)$ follows from lemma A.

Remark 9. If a = 1 and h(z) = (1 + z)/(1 - z), then $P_a(h)$ is the class of functions whose derivatives have a positive real part and part (ii) of Theorem 11 reduces to Theorem 4 of Bernardi [2].

Definition 6. Let $P_a^{\alpha}(h)$, $\alpha > 0$, denote the class of functions $f \in A$ such that $\alpha(k_{a+1} * f)'(z) + (1 - \alpha)(k_a * f)'(z) \prec h(z)$ for $z \in E$.

THEOREM 12. (i) If $f \in P_a^{\alpha}(h)$, then $f \in P_0^{\alpha}(h) = P_a(h)$, for a > 0. (ii) For $\alpha > \beta \ge 0$ and a > 0, $P_a^{\alpha}(h) \subset P_a^{\beta}(h)$.

Proof. (i) Let $p(z) = (k_a * f)'(z)$. By (13), we have

$$\alpha(k_{a+1}*f)'(z) + (1-a)(k_a*f)'(z) = \alpha z p'(z)/a + p(z).$$

If $f \in P_a^{\alpha}(h)$, then $\alpha z p'(z)/a + p(z) \prec h(z)$. By Lemma A, $f \in P_a(h)$ for a > 0.

(ii) Proof of this part is similar to that of part (ii) of Theorem 6.

114

Definition 7. Let $R_a(h)$ denote the class of functions $f \in A$ such that $(k_a * f)(z)/z \prec h(z)$, for $z \in E$.

Remark 10. If a = 1 and h(z) = (1 + z)/(1 - z), then $R_a(h)$ is the class of functions such that $\operatorname{Re}(f(z)/z) > 0$.

THEOREM 13. (1) If $f \in R_{a+1}(h)$, then $f \in R_a(h)$ for a > 0 (ii) If $f \in R_a(h)$, then $F \in R_a(h)$, where F is defined by (1).

Proof. (i) Let $p(z) = (k_a * f)(z)/z$. Then we have

(15)
$$zp'(z) + p(z) = (k_a * f)'(z).$$

By (2) and (15),

(16)
$$zp'(z)/a + p(z) = (k_a * f)(z)/z$$

By Lemma A and (16) we conclude that $f \in R_a(h)$ for a > 0 if $f \in R_{a+1}(h)$.

(ii) Let $p(z) = (k_a * F)(z)/z$. Then $zp'(z) + p(z) = (k_a * F)'(z)$. Using (5) we

get

$$zp'(z)/(\gamma + 1) + p(z) = (k_a * f)(z)/z \prec h(z)$$

if $f \in R_a(h)$. By Lemma A, it follows that $F \in R_a(h)$.

THEOREM 14. (i) $f \in P_a(h)$ if and only if $zf' \in R_a(h)$. (ii) Let a > 0. Then $f \in P_a^a(h)$ if and only if $zf' \in P_a(h)$.

Proof. (i) $(k_a * zf')(z)/z = (k_a * f)'(z)$. This implies part (i).

(ii) From (2), we have

$$(k_a * zf')(z) = a(k_{a+1} * f)(z) - (a-1)(k_a * f)(z).$$

Differentiating the above equation, we get

$$(k_a * zf')'(z) = a(k_{a+1} * f)'(z) + (1-a)(k_a * f)'(z).$$

From the above equation we get part (ii).

Definition 8. Let $R_a^{\alpha}(h), \alpha > 0$, denote the class of function $f \in A$ such that

$$\alpha(k_{a+1} * f)(z)/z + (1-a)(k_a * f)(z)/z \prec h(z), \text{ for } z \in E$$

THEOREM 15. (i) If $f \in R_a^{\alpha}(h)$, then $f \in R_a^0(h) = R_a(h)$, for a > 0. (ii) For $\alpha > \beta \ge 0$ and a > 0, $R_a^{\alpha}(h) \subset R_a^{\beta}(h)$.

Proof. Proof of this theorem is similar to that of Theorem 12.

THEOREM 16. (i) The sets $P_a(h)$ and $R_a(h)$ are convex. (ii) If $f \in P_a(h)$, then $\left|\binom{a+n-2}{n-1}a_n\right| \leq |h_1|/n, n = 2, 3, \dots$ (iii) If $f \in R_a(h)$, then $\left|\binom{a+n-2}{n-1}a_n\right| \leq |h_1|, n = 2, 3, \dots$, where h(z) is of the form $h(z) = 1 + \sum_{1}^{\infty} h_n z^n, f(z) = z + \sum_{1}^{\infty} a_n z^n$ and $\binom{a}{n} = \frac{a(a-1)(a-2)\dots(a-n+1)}{1\cdot 2\cdot 3\dots(n-1)n}$. *Proof.* (i) Let f and g be in $P_a(h)$. Then $(k_a * f)'(z) \prec h(z)$ and $(k_a * g)'(z) \prec h(z)$. Let z_1 be arbitrary point in E. Then $(k * f)'(z_1) \in H(E)$ and $k_a * g)'(z_1) \in H(E)$. Since h(E) is convex for $0 \leq t \leq 1$, we have

$$t(k_a * f)'(z_1) + (1 - t)(k_a * g)'(z_1) \in H(E);$$

that is, $[k_a * (tf - (1 - t)g)]'(z_1) \in H(E)$. Therefore $[k_a * (tf + (1 - t)g)'(z) \prec h(z)$, which implies $tf + (1 - t)g \in P_a(h)$. Thus $P_a(h)$ is convex. Similarly we can prove $R_a(h)$ is convex:

(ii)
$$(k_a * f)(z) = \sum_{2}^{\infty} {a+n-2 \choose n-1} a_n z^n$$

and so

$$(k_a * f)'(z) = 1 + \sum_{n=2}^{\infty} n \binom{a+n-2}{n-1} a_n z^{n-1}.$$

If $f \in P_a(h)$, then $(k_a * f)' \prec h(z)$, which implies

$$\sum_{2}^{\infty} n \binom{a+n-2}{n-1} a_n z^{n-1} \prec \sum h_a z^n.$$

By Lemma D we have the result. Part (iii) can be proved in a similar way.

Definition 9. Let $f(z) = z + \sum_{n=1}^{\infty} a_n z^n$ be in A. Define

$$F_p(z) = \sum_{n=1}^{\infty} \left(\frac{1+\gamma_1}{n+\gamma_1} \cdot \frac{1+\gamma_2}{n+\gamma_2} \dots \frac{1+\gamma_p}{n+\gamma_p} \right) a_n z^n,$$

$$F_{p+1}(z) = \sum_{n=1}^{\infty} \left(\frac{1+\gamma_1}{n+\gamma_1} \cdot \frac{1+\gamma_2}{n+\gamma_2} \dots \frac{1+\gamma_p}{n+\gamma_p} \right) \left(\frac{1+\gamma_{p+1}}{n+\gamma_{p+1}} \right) a_n z^n,$$

where $p = 1, 2, 3, ..., \operatorname{Re} \gamma_p > 0$ and $F_0(z) \equiv f(z)$. Let $g(z) = z \sum_{2}^{\infty} d_n z^n$, $G_p(z)$, $G_{p+1}(z)$ be similarly defined with identical γ_i as in $F_p(z)$ and $F_{p+1}(z)$ but with d_n in place of a_n . (The γ_i may or may not be distinct.)

THEOREM 17. Let f(z), g(z), $F_p(z)$, $F_{p+1}(z)$, $G_p(z)$, $G_{p+1}(z)$ be defined as in Definition 9. Then for p = 1, 2, 3, ..., we have $F_p \in S_a(h)$, $K_a(h)$, $P_a(h)$, $R_a(h)$, according to whether $f \in S_a(h)$ $K_a(h)$, $P_a(h)$ or $R_a(h)$ respectively. Also if $f(z) \in C_a(h)$ with respect to $G_p(z) \in S_a(h)$.

Proof. From the definition of F(z) we have the following recursive relations

$$F_{p+1}(z) = (1 + \gamma_{p+1}) z^{-\gamma_{p+1}} \int_{0}^{z} t^{-1+\gamma_{p+1}} F_p t(dt).$$

We also have similar relation for $G_p(z)$. The results follow respectively from Lemma B, Theorem 2, Theorem 11, Theorem 13, and Lemma C, together with the above recursive relations.

Remark 11. If a = 1 and h(z) = (1 + z)(1 - z), then this theorem reduces to Theorem 5 of Bernardi [2].

REFERENCES

- R. W. Barnard and C. Kellogg, Applications of convolution operators to problems in univalent function theory, Michigan Math. J. 27 (1980), 81-94.
- [2] S. D. Bernardi, Convex and starlike functions, Trans. Amer. Math. Soc. 135 (1969) 429-446.
- [3] P. Einigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet Differential Subordination, General Inequalities 3, Birkhauser Verlag, Basel, 339-348.
- [4] W. K. Hayman, Multivalent Functions, Cambridge University Press, 1958.
- [5] S. S. Miller, P. T. Mocanu and M. O. Reade, *Bazilevic functions and generalised convexity*, Rev. Roumaine Math. Pures Appl. **19** (1974), 213–224.
- [6] P. T. Mocanu, Une propriéte de convexité généralisé dans la theorié da la représentation conforme, Mathematica (Cluj), 11 (34) (1969), 127-133.
- [7] P. T. Mocanu and M. O. Reade, On generalized convexity in conformal mappings, Rev. Roumaine Math. Pures Appl. 16 (1971), 1541-1544.
- [8] K. S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc., to appear.
- [9] K. S. Sakaguchi, A note on p-valent functions, J. Math. Soc. Japan 14 (1962), 312-321.
- [10] T. Umezawa and K. Takijama, On the univalence and close-to-convexity of a certain integral, J. Saitama Univ. Fac., Ed. Math. Natur. Sci. 23 (1974), 3-8.

The Ramanujan Institute, University of Madras, Madras - 600 005, India. (Received 03 07 1985)