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CERTAIN APPLICATIONS OF

DIFFERENTIAL SUBORDINATION

K. S. Padmanabhan and R. Manjini

Abstract. Let A denote the class of functions f regular in the unit disc E, such that
f(0) = 0 = f 0(0) � 1. Let ka(z) = z=(1� z)a where a is a real number. We denote by Ka(h) the

class of functions f 2 A satisfying 1+
z(ka�f)

00(z)
(ka�f)0(z)

� h(z), where h is a convex univalent function

in E with h(0) = 1 and Re (h(z)) > 0. Several properties of the class Ka(h) are investigated.
Certain allied classes are also studied.

Let E = fz 2 C : jzj < 1g and H(E) be the set of all functions holomorphic
in E. Let A = ff 2 H(E) : f(0) = 0 = f 0(0) � 1g. By f � g we denote the
Hadarnard product or convolution of f; g 2 H(E). That is, if f(z) =

P1

0 anz
n,

g(z) =
P1

0 bnz
n, then (f � g)(z) =

P1

0 anbnz
n.

Let g and G be two functions in H(E). Then we say that g(z) is subordinate
to G(z) (written g(z) � G(z)) if G(z) is univalent, g(0) = G(0) and g(E) � G(E).
Let ka(z) = z=(1 � z)a, where a is any real number. From now on we assume,
unless otherwise stated, h 2 H(E) is convex univalent in E and satis�es h(0) = 1
and Re (h(z)) > 0 for z 2 E.

De�nition A. [2]. An in�nite sequence fdng
1
1 of complex numbers is said

to preserve property T if whenever f(z) =
P1

1 anz
n possesses property T , the

convolution J(z) = f(z) �
P1

1 dnz
n also possesses property T .

De�nition B. [8]. Let Sa(h) denote the class of functions f 2 A such that
z(ka�f)

0(z)
ka�f)(z)

� h(z), where (ka � f)(z)=z 6= 0, for z 2 E.

De�nition C. [8]. Let Ca(h) denote the class of functions f 2 A such that
z(ka�f)

0(z)
ka')(z)

� h(z), for some ' 2 Sa(h).

When a = 1 and h(z) = (1 + z)=(1 � z), the classes Sa(h), Ca(h) reduce to
the familiar classes S� (starlike univalent functions), C (close-to-convex functions)
respectively. We need the following �ve lemmas in the sequel.
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LemmaA. [3]. Let �; 
 2 C, let h 2 H(E) be convex uniralent in E with

h(0) � 1 and Re (�h(z) + 
) > 0, z 2 E, and let p 2 H(E), p(z) = 1 + p1z + . . . .
Then

p(z) +
zp0(z)

�p(z) + 

� h(z)

implies that p(z) � h(z).

Lemma B. [8]. Suppose f 2 Sa(h) and

(1) F (z) =

 + 1

z


xZ
0

t
�1f(t)dt =

1X
n=1

�

 + 1


 + n

�
anz

n:

where Re 
 > 0 and f(z) = z+
P1

2 anz
n. Then F 2 Sa(h), provided (ka�F )(z)=z 6=

0 for z 2 E.

Lemma C. [8] Suppose f 2 Ca(h) with respect to the function ' 2 Sa(h).

De�ne ' by '(z) = (' � h
)(z), where h
(z) =

1X
n=1

�

 + 1


 + n

�
zn. Then F (z),

de�ned by (1), is in Ca(h) with respect to ' provided (ka � ')z=z 6= 0 for z 2 E.

Lemma D. [4 p. 12]. Suppose that h(z) =
P1

2 hnz
n is convex univalent and

maps jzj < 1 onto D. Let ! = g(z) =
P1

1 gnz
n be regular in jzj < 1 and assume

there are only values ! which lie in D. Then jgnj � jh1j and in particular jhnj � jh1j
for n � 1.

Lemma E. [1]. Let ' 2 K, the class of convex univalent functions, g 2 S�

and F 2 H(E) such that ReF > 0. Then (' � Fg)=(' � g) lies in the convex hull

of F (E).

For F 2 A and ka(z) = z=(1�z)a, a is any real number, we have the following
easily veri�ed result:

(2) z(ka � f)
0(z) = a(ka+1 � f)(z)� (a� 1)(ka � f)(z):

De�nition 1. Let Ka(h) denote the class of functions f 2 A such that

1 +
z(ka � f)

00(z)

(ka � f)0(z)
� h(z); whwre (ka � f)

0(z) 6= 0 for z 2 E:

Remark 1. If a = 1 and h(z)� (1 + z)=(1� z), then Ka(h) = K, the class of
convex univalent functions.

Theorem 1. If f 2 Ka+1(h), then f 2 Ka(h) for a � 1.

Proof. Let p(z) =
z(ka � f)

00(z)

(ka � f)0(z)
. Di�erentiating (2), we get

p(z) + (a� 1) = a
(ka+1 � f)

0(z)

(ka � f)0(z)
:
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Taking logarithmic derivatives and multiplying by z, we get

zp0(z)

p(z) + (a� 1)
=

z(ka+1 � f)
00(z)

(ka+1 � f)0(z)
�
z(ka � f)

00(z)

(ka � f)0(z)
;

which gives

(3) 1 +
z(ka+1 � f)

00(z)

ka+1 � f)0(z)
=

zp0(z)

p(z) + (a� 1)
+ p(z):

If f 2 Ka+1(h), from (3) we have

zp0(z)

p(z) + (a� 1)
+ p(z) � h(z):

From Lemma A it follows that p(z) � h(z) for a � 1; that is, 1 +
z(ka � f)

00(z)

(ka � f)0(z)
�

h)z), which means f 2 Ka(h) for all a � 1.

Theorem 2. Suppose f 2 Ka(h) and F is de�ned by (1). Then F 2 Ka(h)
provided (ka � F )

0(z) 6= 0 for z 2 E.

Proof. We have zF 0(z) + 
F (z) = (
 + 1)f(z) and so

(ka � (zF
0))(z) + 
(ka � F )(z) = (
 + 1)(ka � f)(z):

Using the fact

(4) z(ka � F )
0(z) = (ka � zF

0)(z);

we obtain

(5) z(ka � F )
0(z) + 
(ka � F )(z) = (
 + 1)(ka � f)(z):

Let p(z) = 1 +
z(ka � F )

00(z)

(ka � F )0(z)
. Di�erentiating (5), we get

p(z) + 
 = (
 + 1)
(ka � f)

0(z)

(ka � F )0(z)

and so we have

(6)
zp0(z)

p(z) + 

+ p(z) = 1 +

z(ka � f)
00(z)

(ka � f)0(z)
:

We conclude, if f 2 Ka(h), from (6) and Lemma A that p(z) � h(z). Thus
F 2 Ka(h).

Corollary 2.1. For every 
 with Re 
 > 0, the sequence f(
 + 1)=(
 + n)g
preserves the property f 2 Ka(h).

Proof. Corollary follows from De�nition A with dn = (
 + 1)=(
 + n).
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Remark 2. If a = 1 and h(z) = (1 + z)=(1 � z), we deduce Theorem 2 and
Corollary 2.1 of Bernardi [2] from the above theorem and its corollary.

Theorem 3. (i) f 2 Ka(h) if and only if zf 0 2 Sa(h). (ii) If f 2 Ka(h),
then f 2 Sa(h); that is, Ka(h) � Sa(h).

Proof. Using (4) we �nd that

z(ka � zf)
0(z)

(ka � zf 0)(z)
= 1 +

z(ka � f)
00(z)

(ka � f)0(z)
;

which implies (i).

Let p(z) =
z(ka � f)

0(z)

(ka � f)(z)
. Then

(7) p(z) +
zp0(z)

p(z)
= 1 +

z(ka � f)
00(z)

(ka � f)0(z)
:

If f 2 Ka(h), then f 2 Sa(h) by (7) and Lemma A.

Remark 3. If a = 1 and h(z) = (1 + z)=(1� z), then part (i) reduces to the
well-known resul that zf 0 is starlike if and only if f is convex, and part (ii) reduces
to the well-known result that the class of convex univalent functions is contained
in the class of starlike univalent functions.

Corollary 3.1. If f 2 Sa(h), then

zZ
0


 + 1


 + n

2
4

tZ
0

x
�1f(x)dx

3
5 dt is in

Ka(h).

Proof. Let f 2 Sa(h). Then

 + 1


z

zZ
0

x
�1f(x)dx is in Sa(h) by Lemma

B. By part (i) of Theorem 3 there is a function g 2 Ka(h) such that zg0(z) =


 + 1


z

zZ
0

x
�1f(x)dx which implies the result of the corollary.

Corollary 3.2. If f 2 Ka(h) and h(z) = (
 + 1)f(z)� 
F (z), where F is

de�ned by (1), then h 2 Sa(h).

Proof. Let f 2 Ka(h). Then by Theorem 2 we have F 2 Ka(h). By part (i)
of Theorem 3, zF 0 2 Sa(h). But zF

0(z) = (
+1)f(z)�
F (z). Hence the corollary.

Theorem 4. Let ' 2 K, g 2 Sa(h). Then ' � g 2 Sa(h).

Proof. Let F =
z(ka � g)

0(z)

(ka � g)(z)
so that F � h. Now

z(ka � ' � g)
0(z)

(ka � ' � g)(z)
=
z(' � (ka � g))

0(z)

(' � (ka � g))(z)
=

(' � z(ka � g)
0)(z)

(' � (ka � g))(z)
=

(' � F (ka � g))(z)

(' � (ka � g))(z)
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Since g 2 Sa(h), ka�g 2 S� and it follows from Lemma E that z(ka�'�g)
0(z)=(ka�

' � g)(z) lies in the convex hull of F (E). But F � h, where h is convex. So the
convex hull of F (E) is a subset of h(E) and the conclusion follows.

Corollary 4.1. Let ' 2 K, f 2 Ka(h). Then ' � f 2 Ka(h).

Proof. By Theorem 3, f 2 Ka(h) if and only if zf 0 2 Sa(h). z(' � f)
0(z) =

(' � zf 0)(z) 2 Sa(h) by Theorem 4. Hence ' � f 2 Ka(h).

Theorem 5. Let f 2 A and let h be continuous on the unit circle, besides

,satisfying the usual conditions. f 2 Sa(h) if and only if (k � f)(z) 6= 0, z 6= 0, and

(8) f(z) �
z[1� h(x) + (a+ h(x))z]

(1� z)a+1
6= 0; 0 < jzj < 1; jxj = 1:

Proof. Let f 2 A satisfy (ka�f)(z) 6= 0, z 6= 0 and (8). Put g(z) = (ka�f)(z).
Then g(z) 6= 0 for 0 < jzj < 1. We can rewrite (8) as

(9) G(z) =
(ka+1 � f)(z)

(ka � f)(z)
6=

a� 1

a
+

1

a
h(x); jxj = 1; z 2 E:

From (2) we get

(10) G(z) =
a� 1

a
+

1

a

zg0(z)

g(z)
; z 2 E:

(9) and (10) imply zg0(z)=g(z) 6= h(x), jxj = 1, z 2 E. zg0(z)=g(z)jz=0 = 1 2 h(E).
Also zg0(z)=g(z) is analytic in E and so maps E onto a region which conttains 1
and is a subset of h(E). Therefore zg0(z)=g(z) � h(z). Hence f 2 Sa(h).

Conversely, f 2 Sa(h) implies zg0(z)=g(z) � h(z), z 2 E and so zg0(z)=g(z) 6=
h(x), jxj = 1, z 2 E. By retracing the steps we obtain the converse.

De
nition 2. Let K�
a (h), � be any real number, denote the class of functions

f 2 A such that

Ja(�; f(z)) = �

�
1 +

z(ka � f)
00(z)

(ka � f)0(z)

�
+ (1� �)

z(ka � f)
0z

(ka � f)(z)
� h(z)

with (ka � f)(z)=z 6= 0 and (ka � f)
0(z) 6= 0 for z 2 E.

Remark 4. When a = 1 and h(z) = (1 + z)=(1� z), K�
a (h) is the class of all

�-convex functions introduced by Mocanu [6].

For � = 1, the class K�
a (h) coincides with the class Ka(h); and for � = 0, it

reduces to the class Sa(h). Thus the sets K
�
a (h) give a \continuous" passage from

the class Ka(h) to the class Sa(h).

Theorem 6. (i) If f 2 K�
a (h), then f 2 K0

a(h) = Sa(h) for � > 0. (ii) For
� > � � 0. K�

a (h) � K�
a (h).
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Proof. (i) Let p(z) = z(ka�f)
0(z)

(ka�f)(z)
. Then, using (7), we �nd that Ja(�; f(z)) =

�zp0(z) + p(z). If f 2 K�
a (h), then, by Lemma A, we have p(z) � h(z) if � > 0.

That is, f 2 K0
a(h) = Sa(h) for � > 0.

(ii) If � = 0, then this statement reduces to (i). Hence we assume that � 6= 0.
Suppose f 2 K�

a (h). Then Ja(�; f(z)) � h(z). Let z1 be arbitrary point in E.
Then

(11) Ja(�; f(z1)) 2 H(E):

Also, by part (i)
z(ka � f)

0(z)

(ka � f)(z1)
2 h(z); so we have

(12)
z1(k � f)

0(z1)

(ka � f)(z1)
2 H(E):

Now

Ja(�; f(z)) =

�
1�

�

�

�
z(ka � f)

0(z)

(ka � f)(z)
+
�

�
Ja(�; f(z)):

Since �=� < 1 and h(E) is convex, Ja(�; f(z1)) 2 H(E) by (11) and (12). Therefore
Ja(�; f(z)) � h(z). That is, f 2 K�

a (h).

Remark 5. If a = 1 and h(z) = (1+ z)=(1� z), then the �rst part of Theorem
6 reduces to the result due to Mocanu and Reade [7] that all �-convex functions
are starlike and the second part of Theorem 6 reduces to a result of Sakaguehi [9].

Theorem 7. (i) If f 2 K�
a (h), F (z) = (ka �f)(z)

�
z(ka � f)

0(z)

(ka � f)(z)

��
, and if we

choose that branch of

�
z(ka � f)

0(z)

(ka � f)(z)

��
which is equal to 1 at z = 0, then F 2 S1(h).

(ii) If F (z) = f
zR
0

[(ka � f)(t)=t]
1��((ka � f)

0(t))�dt, then F 2 K1(h) if and

only if f 2 K�
a (h).

Proof. (i) From the de�nition, we have F (0) = 0, F 0(0) = 1, and

zF 0(z)=F (z) = Ja(�; f
0(z)) � h(z);

since f 2 K�
a (h). So F 2 S1(h).

(ii) From the de�nition of F , we have

F 0(z) = [(ka � f)(z)=z]
1��((ka � f)

0(z))�

and so 1+zF 00(z)=F 0(z) = Ja(�; f
0(z)). Hence F 2 K1(h) if and only if f 2 K�

a (h).

Remark 6. If a = 1 and h(z) = (1 + z)=(1 � z), then part (i) reduces to a
result of Mocanu [6] and part (ii) reduces to a result of Umezawa and Takijama
[10].
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De�nition 3. Let Ba(�), � > 0, be the class of functions f 2 A such that

f(z) =

2
4�

zZ
0

(ka � g)
�(t)

dt

t

3
5
1=�

; where g 2 Sa(h):

Theorem 8. If f 2 Ba(1=�), � > 0, then f 2 K�
1 (h).

Proof. Let f 2 Ba(1=�). Then f(z) =

2
4 1

�

zZ
0

(ka � g)
1=�(t)

dt

t

3
5
�

; so

J1(�; f(z)) = (1� �)
zf 0(z)

f(z)
+ �

�
1 +

zf 00(z)

f(z)

�
=
z(ka � g)

0(z)

(ka � g)(z)
� h(z);

since g 2 Sa(h). Hence f 2 K�
1 (h).

Remark 7. If a = 1 and h(z) = (1 + z)=(1� z), then the class Ba(�) = B(�),
the class of all Bazilevic functions of type a and Theorem 8 reduces to Theorem 1
of Miller, Mocanu and Reade [5].

De�nition 4. If f(z) 2 Sa(h) and � = �(f) = 1.u.b. [�=f 2 K�
a (h); � � 0],

then we say that f(z) is of type a in Sa(h), and we write f 2 K(a; �). We note
that � is non-negative and may be in�nite.

Theorem 9. (i) f 2 K(a; �) for � < 1 if and only if f 2 K�
a (h) for all �,

0 � � � � and f 62 K�
a (h) for � > �.

(ii) Sa(h) =
S
��0K(a; �), the sets K(a; �), � � 0 being disjoint.

Proof. (i) If f 2 K(a; �), then Ja(�; f(z)) � h(z) holds for z 2 E and for
all �, 0 < � < �. So f 2 K�

a (h) for 0 � � < �. By letting � ! � we note that

Ja(�; f(z)) lies in h(E) for all z 2 E, where h(E) is the closure of H(E). Since
Ja(�; f(z)) is an analytic function in E, by open mapping theorem, the image of
E by JG(�; f(z)) must be a region or a point. But Ja(�; f(z)) is not a constant
function because f(z) is not constant. Therefore, the range of Ja(�; f(z)) must be
a region and so Ja(�; f(z)) lies in h(E) for all z 2 E. That is, Ja(�; f(z)) � h(z).
Hence f 2 K�

a (h).

The converse follows from the de�nition of K(a; �).

(ii) From the de�nition, we can write Sa(h) =
S
��0K(a; �). Since, by part

(i), K(a; �) 6= K(a; �) if � 6= �, the union is disjoint.

Example. Let f(z) � z. From the de�nition of Ja(�; f(z)) we �nd that
Ja(�; z) � 1. Hence Ja(�; z) � h(z) for all � > 0; that is, f 2 K�

a (h) for all � > 0
and hence f 2 K(�;1).

Theorem 10. If f 2 K(a; �), � > 0, and if for 0 < � � �, we choose the

branch of

�
z(ka � f)

0(z)

(ka � f)(z)

��
which is equalto 1 when z = 0, then the function

F�(z) = (kastf)(z)

�
z(ka � f)

0(z)

(ka � f)(z)

��
; 0 � � � �;
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is in S1(h) for all �, 0 � � � �.

Proof. If f 2 K(a; �), then, by part (i) of Theorem 9, we have f 2 K�
a (h)

for all �, 0 � � � �. By part (i) of Theorem 7, we have F�(z) 2 S1(h) for all �,
0 � � � �.

Remark 8. If a = 1 and h(z) = (1 + z)=(1 � z), then Theorem 10 reduces
to Theorem 4 and Theorem 9 reduces to the remark before Theorem 4 of Miller,
Mocanu and Reade [5].

De�nition 5. Let Pa(h) denote the class of functions f 2 A such that (ka �
f)0(z) � h(z), for z 2 E.

Theorem 11. (i) If f 2 Pa+1(h), then f 2 Pa(h) holds for a > 0.

(ii) If f 2 Pa(h) then F 2 Pa(h), where F is de�ned by (1).

Proof. (i) Let p(z) = (ka � f)
0(z). Then, by (2), we have

zp(z) = a(ka+1 � f)(z)� (a� 1)(ka � f)(z);

and so

(13) zp0(z)=a+ p(z) = (ka+1 � f)
0(z):

If f 2 Pa+1(h), then from (13) and Lemma A, it follows that for a > 0, p(z) � h(z).
That is, f 2 Pa(h) for all a > 0.

(ii) Let p(z) = (ka � F )
0(z). From (5) we have

(14) zp(z) + 
(ka � F )(z) = (
 + 1)(ka � f)(z):

Di�erentiating (14), we get

zp0(z)=(
 + 1) + p(z) = (ka � f)
0(z) � h(z);

since f 2 Pa(h). Then F 2 Pa(h) follows from lemma A.

Remark 9. If a = 1 and h(z) = (1 + z)=(1 � z), then Pa(h) is the class of
functions whose derivatives have a positive real part and part (ii) of Theorem 11
reduces to Theorem 4 of Bernardi [2].

De�nition 6. Let P�
a (h), � > 0, denote the class of functions f 2 A such that

�(ka+1 � f)
0(z) + (1� �)(ka � f)

0(z) � h(z) for z 2 E.

Theorem 12. (i) If f 2 P�
a (h), then f 2 P a

0 (h) = Pa(h), for a > 0.

(ii) For � > � � 0 and a > 0, P�
a (h) � P �

a (h).

Proof. (i) Let p(z) = (ka � f)
0(z). By (13), we have

�(ka+1 � f)
0(z) + (1� a)(ka � f)

0(z) = �zp0(z)=a+ p(z):

If f 2 P�
a (h), then �zp0(z)=a+ p(z) � h(z). By Lemma A, f 2 Pa(h) for a > 0.

(ii) Proof of this part is similar to that of part (ii) of Theorem 6.
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De�nition 7. Let Ra(h) denote the class of functions f 2 A such that (ka �
f)(z)=z � h(z), for z 2 E.

Remark 10. If a = 1 and h(z) = (1 + z)=(1 � z), then Ra(h) is the class of
functions such that Re (f(z)=z) > 0.

Theorem 13. (1) If f 2 Ra+1(h), then f 2 Ra(h) for a > 0 (ii) If f 2 Ra(h),
then F 2 Ra(h), where F is de�ned by (1).

Proof. (i) Let p(z) = (ka � f)(z)=z. Then we have

(15) zp0(z) + p(z) = (ka � f)
0(z):

By (2) and (15),

(16) zp0(z)=a+ p(z) = (ka � f)(z)=z:

By Lemma A and (16) we conclude that f 2 Ra(h) for a > 0 if f 2 Ra+1(h).

(ii) Let p(z) = (ka �F )(z)=z. Then zp
0(z)+ p(z) = (ka �F )

0(z). Using (5) we
get

zp0(z)=(
 + 1) + p(z) = (ka � f)(z)=z � h(z)

if f 2 Ra(h). By Lemma A, it follows that F 2 Ra(h).

Theorem 14. (i) f 2 Pa(h) if and only if zf 0 2 Ra(h). (ii) Let a > 0. Then

f 2 P a
a (h) if and only if zf 0 2 Pa(h).

Proof. (i) (ka � zf
0)(z)=z = (ka � f)

0(z). This implies part (i).

(ii) From (2), we have

(ka � zf
0)(z) = a(ka+1 � f)(z)� (a� 1)(ka � f)(z):

Di�erentiating the above equation, we get

(ka � zf
0)0(z) = a(ka+1 � f)

0(z) + (1� a)(ka � f)
0(z):

From the above equation we get part (ii).

De�nition 8. Let R�
a (h), � > 0, denote the class of function f 2 A such that

�(ka+1 � f)(z)=z + (1� a)(ka � f)(z)=z � h(z); for z 2 E:

Theorem 15. (i) If f 2 R�
a (h), then f 2 Ra

0(h) = Ra(h), for a > 0.

(ii) For � > � � 0 and a > 0, R�
a (h) � R�

a(h).

Proof. Proof of this theorem is similar to that of Theorem 12.

Theorem 16. (i) The sets Pa(h) and Ra(h) are convex. (ii) If f 2 Pa(h),

then
����a+n�2n�1

�
an

��� � jh1j=n, n = 2; 3; . . . . (iii) If f 2 Ra(h), then
����a+n�2n�1

�
an

��� �
jh1j, n = 2; 3; . . . , where h(z) is of the form h(z) = 1 +

P1
1 hnz

n, f(z) = z +P1

1 anz
n and

�
a

n

�
=

a(a� 1)(a� 2) . . . (a� n+ 1)

1 � 2 � 3 . . . (n� 1)n
.



116 Padmanabhan and Manjini

Proof. (i) Let f and g be in Pa(h). Then (ka � f)
0(z) � h(z) and (ka �

g)0(z) � h(z). Let z1 be arbitrary point in E. Then (k � f)0(z1) 2 H(E) and
ka � g)

0(z1) 2 H(E). Since h(E) is convex for 0 � t � 1, we have

t(ka � f)
0(z1) + (1� t)(ka � g)

0(z1) 2 H(E);

that is, [ka � (tf � (1� t)g)]0(z1) 2 H(E). Therefore [ka � (tf +(1� t)g)0(z) � h(z),
which implies tf + (1� t)g 2 Pa(h). Thus Pa(h) is convex. Similarly we can prove
Ra(h) is convex:

(ii) (ka � f)(z) =
P1

2

�
a+n�2
n�1

�
anz

n

and so

(ka � f)
0(z) = 1 +

1X
2

n

�
a+ n� 2

n� 1

�
anz

n�1:

If f 2 Pa(h), then (ka � f)
0 � h(z), which implies

1X
2

n

�
a+ n� 2

n� 1

�
anz

n�1 �
X

haz
n:

By Lemma D we have the result. Part (iii) can be proved in a similar way.

De�nition 9. Let f(z) = z +
P1

2 anz
n be in A. De�ne

Fp(z) =

1X
n=1

�
1 + 
1
n+ 
1

�
1 + 
2
n+ 
2

. . .
1 + 
p
n+ 
p

�
anz

n;

Fp+1(z) =

1X
n=1

�
1 + 
1
n+ 
1

�
1 + 
2
n+ 
2

. . .
1 + 
p
n+ 
p

��
1 + 
p+1
n+ 
p+1

�
anz

n;

where p = 1; 2; 3; . . . , Re 
p > 0 and F0(z) � f(z). Let g(z) = z
P1

2 dnz
n, Gp(z),

Gp+1(z) be similarly de�ned with identical 
i as in Fp(z) and Fp+1(z) but with dn
in place of an. (The 
i may or may not be distinct.)

Theorem 17. Let f(z), g(z), Fp(z), Fp+1(z), Gp(z), Gp+1(z) be de�ned

as in De�nition 9. Then for p = 1; 2; 3; . . . , we have Fp 2 Sa(h), Ka(h), Pa(h),
Ra(h), according to whether f 2 Sa(h) Ka(h), Pa(h) or Ra(h) respectively. Also if

f(z) 2 Ca(h) with respect to Gp(z) 2 Sa(h).

Proof. From the de�nition of F (z) we have the following recursive relations

Fp+1(z) = (1 + 
p+1)z
�
p+1

zZ
0

t�1+
p+1Fpt(dt):

We also have similar relation forGp(z). The results follow respectively from Lemma
B, Theorem 2, Theorem 11, Theorem 13, and Lemma C, together with the above
recursive relations.
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Remark 11. If a = 1 and h(z) = (1 + z)(1� z), then this theorem reduces to
Theorem 5 of Bernardi [2].
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