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ON QUASIGROUP VARIETIES CLOSED UNDER ISOTOPY

Sava Krsti�c

Abstract. This note deals with quasigroup varieties de�ned by identities in which every
variable occurs exactly twice. We prove that among them only four well-known ones are closed
under isotopy.

1. Introduction. Etta Falconer [3] has initiated a systematic study of
isotopically closed varieties of quasigroups. An ultimate goal, the determination of
all such varieties, seems at the moment far from being completed. In this paper
we specialize to varieties de�ned by quadratic identities (identities in which every
variable occurs twice) and �nd all of them which are closed under isotopy.

In group theory the situation with quadratic identities is extremely simple.
Namely, every quadratic identity in the language of groups is equivalent (modulo
group axioms) to one of the following: x = x, xy = yx, x2 = 1. De�ne G0, A0, B0 to
be the corresponding group varieties (groups, Abelian groups, Boolean groups). Let
G, A, B be varieties consisting of all quasigroups isotopie to a member of G0, A0,
B0 respectively. It is well-known that these varieties are axiomatized respectively
by quasi-identities x1y1 = x2y2 ^ x3y1 = x4y2 ^ x3y3 = x4y4 ) y1y3 = x2y4 (the
Reidelneister condition), x1y2 = x2y1 ^ x1y3 = x3y1 ) x2y3 = x3y2 (the Thomsen
condition) and x1y1 = x2y)x1y2 = x2y1; cf. [1]. Since every quadratic quasi-
identity can be converted into an equivalent (modulo quasigroup axioms) identity,
it follows that each of the G, A, B, is de�ned by a single quadratic identity. Our
main result here is that these, together with the variety Q of all quasigroups, are
the only isotopically closed varieties de�ned by quadratic identities:

Theorem. Let V be the variety of quasigroups satisfying quadratic identities
E1; E2; . . . . If V is closed under isotopy, then it is equal to one of Q, G, A, B.

As a consequence we obtain that every isotopically closed quasigroup variety
de�ned by quadratic identities contains a non-trivial group. Whether the same is
true for all isotopically closed varieties is an unsolved problem raised by Falconer
[3, p. 519].
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Another immediate consequence is that every isotopy invariant quadratic
quasigroup identity is equivalent to one of the following: x = x, the Reidemeis-
ter condition, the Thomsen condition, x1y1 = x2y2 ) x1y2 = x2y1.

2. Preliminaries. Because of some advantages in carrying out inductive
arguments, we shall prefer to work with quadratic quasi-identities instead of qua-
dratic identities. The transition from one to the other is immediate and we describe
it �rst.

Let � = ('1 =
V � � �V'n ) '0) be a quadratic quasi-identitety in the

quasigroup language and let X be the set of variables occurring in �. We say that
� is connected if for every non-trivial partition X = X1 [ X2 there exists a 'i

which contains an occurrence of a variable from both X1 and X2. De�ne aslo � to
be reduced if every 'i is of the form xp � xq = xr where xp, xq , xr are variables.

Suppose now � as above is a connected non-reduced quadratic quasi-identity
(in particular, it may be an identity). Then some 'i is equivalent to t1 � t2 = t3,
for some quasigroup terms t1, t2, t3 which are not all variables. If i > 0, then � is
equivalent to

�0 = (
^

j=i

j 6=i

'j ^ t1 = y1 ^ t2 = y2 ^ t3 = y3 ^ y1y2 = y3 ) '0)

and if i = 0 then � is equivalent to

�0 = (

n̂

j=1

'j ^ t1 = y1 ^ t2 = y2 ^ t3 = y)y1y2 = y3):

In both cases �0 is a connected quadratic quasi-identity. Arguing by induction on
the size of terms involved, it easily follows that every connected quadratic quasi-
identity is equivalent to a reduced one. From now on we shall use crqq as a short-
hand for \connected reduced quadratic quasi-identity".

So let � = ('1^� � �^'n ) '0) be a crqq and X the set of variables occurring
in �. We de�ne the graph �(Phi) associated with � as follows. Its vertex set is
f'0; '1; . . . ; 'ng [ X and the edge set is feihj i 2 f0; . . . ; ng; h 2 fa; b; cgg. The
incidence relation is de�ned by: if 'i = (xp � xq = xr), then eia, eib, eic connect 'i

respectively with xp, xq , xr. Clearly �(�) is a connected bipartite graph and the
degree of every vertex 'i is three, while every xp is of degree two.

The following notation is in order to rede�ne satis�ability of quasi-identities.
Let � be as above, and for every 'i = (xp � xq = xr) de�ne

Æ'i = fxp; xq ; xrg. A
subset Y of X will be called closed if for every i the number of edges connecting
'i with elements of Y is not two. Let ClY denote the smallest closed subset of X
containing Y . A function � : Y ! Q, where Y is a subset of X and Q a quasigroup,
will be called a valuation (on Y with values in Q) if for every 'i = (xp � xq = xr)
such that Æ'i � Y one has �(xp) � �(xq) = �(xr). Clearly, every valuation on Y
extends uniquely to a valuation on ClY if it can be extended there at all.
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Let Y contain all but one element of X . One can easily check that a quasi-
group Q satis�es � i� every valuation Y ! Q extends to a valuation on X cf. [7,
Lemma 1]. (Notice, as a consequence, that � is equivalent to �i = (

V
j 6= i)'j )

'i) for every i. This is in accordance with the obvious fact that �(�) and �(�i)
coincide. On the other hand, if the labelling of �(�) is de�ned by assigning the
label h to every edge eih, then it is easy to see that the graph �(�) and the labelling
of its edges determine f�0; . . . ;�ng uniquely up to renaming of variables). De�ne
a subset Y of X to be a base of � if the graph obtained from �(�) by removing
for every y 2 Y an edge incident with y is a tree. Clearly, if Y is a base, then Y
contains no Æ'i; in fact, bases are maximal subsets of Y with this property. Thus
every function on a base with values in a quasigroup is a valuation. On the other
hand, one has ClY = X for every base Y .

Lemma 1. [7, Lemma 2] Let Y be a base of �. A quasigroup Q satis�es � if
and only if every function Y ! Q extends to a valuation X ! Q.

We remark that graphs associated to various quasigroup equations were in-
troduced and systematically employed in [7], to which we refer the reader for more
details about the facts stated in this section. The reader will observe a minor dif-
ference between �(�) de�ned above and that of [7] { the former is obtained from
the latter by subdividing every edge by a new vertex.

The following lemma provides us with a graphical test for deciding when the
variety de�ned by a crqq consits of group isotopes only; cf. [1, Theorem 3], [4,
Theorem 1] and [5, Theorem 4.3].

Lemma 2. [6, Theorem 1] A crqq � has the property that every quasigroup
satisfying it is a group isotope if and only if the complete graph K4 on for vertices
can be (homeomorphically) embedded in �(�).

3. Proof of the Theorem: �rst part. Assume that V consists of group
isotopes only (i.e. v � G). Let L be the variety of all loops contained in V ; it can
be easily checked that V is the class of all quasigroups isotopic to a member of L;
c.f. [3, Theorem 3.3]. Since every loop isotopic to a group is a group itself (Albert
s theorem), from our assumption V � G it follows that L is a quadratic group
variety. The only such varieties are G0, A0 and B0, so V is one of G, A, B.

It remains to consider the more diÆcult case V 6� G. Let �1;�2; . . . be crqqs
equivalent to E1; E2; . . . respectively. In view of Lemma 2 it follows thatK4 cannot
be embedded in any �(�i).

Notice that every Boolean group satis�es all quadratic identities. Our strategy
is to prove that, given a crgg � which is not satis�ed by all quasigroups and such
that K4 cannot be embedded in �(�), there exists an isotope of a Boolean group
which does not satisfy �. This would clearly �nish the proof of the theorem.

4. Some special isotopes of Boolean groups. If B is a Boolean group
and �; �; 
 2 AutB, let B��
 be the isotope of B in which the multiplication is
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de�ned by x � y = z i� �(x) + �(y) = 
(z) = 0. In this section we determine when
a quasigroup of the form B��
 satis�es a given crqq.

Let � be a crqq and let F be the free group on three free generators a; b; c.
Orient edges of �(�) so that every 'i is the initial vertex of all edges incident with
it. Since every path in �(�) can be written as a product of oriented edges eih and
their inverses, the labelling function �(eih) = h can be extended multiplicatively
to all paths in �(�). Thus, for every path ! in �(�), �(!) is a group word in
letters a; b; c; we regard it as an element of F . De�ne N(�) to be the smallest
normal subgroup of F which contains labels of all closed paths in �(�). Let also
f��
 : F ! AutB be the homomorphism de�ned by a 7! �, b 7! �, c 7! 
.

Lemma 3. The quasigroup B��
 satis�es � if and only if N(�) � Ker f��
.

Proof. Denote the composition f��
 � � by f . Call two paths !1 and !2
conjugate ih there exists a path � such that !1 = �!2�

�1. Every closed path
in �(�) is a product of conjugates of simple closed paths (simple = without self-
intersections). Therefore N(�) � Ker f��
 is equivalent to: f(!) = 1 for every
simple closed path !.

Assume that B��
 satis�es � and let ! be a simple closed path in �(�).
Let x1; '1; x2; '2; . . . ; xk ; 'k be vertices of ! written in the order one comes across
them traversing !. Since there exists a maximal tree in �(�) which contains the
whole of ! but an edge incident with x1 (as every tree in a graph is contained in
a maximal tree), it follows that there exists a base Y of � which contains x1 and
none of x2; . . . ; xk. De�ne �b : Y ! B by �b(x1) = b and Thetab(y) = 0 for

y 6= x1; by Lemma 1 there exists a valuation �̂b on X which extends �b. Since
Cl (Y � fx1g) = X � fx1; . . . ; xkg, it follows that �̂b(x) = 0 for x 6= x1; . . .xk.

Let ei and �ei be edges of �(�) connecting 'i with xi and xi+1, respec-

tively (i + 1 taken mod k). Let
00

ei be the third edge incident with 'i and zi
be its terminal vertex (Fig. 1), From the fact that �̂b is a valuation we get

f(ei)�̂b(xi) + f(�ei)�̂(xi+1) + f(
00

ei)�̂b(zi) = 0. Since �b(zi) = 0 it follows that

�̂b(xi) = f(e�1i �ei)�̂b(xi+1). Finally, from these k equalites, ! = e�11 �e1 . . . e
�1
k �ek

and �̂b(xi) = b it follows that f(!)b = b, i.e., f(!) = 1, since b was taken arbitrarily.
This completes the proof of the \only if" part.

Figure 1.
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To prove the converse assume that f vanishes on all closed paths in �(�).
Pick up a base Y of � and a function � : Y ! B��
 . For every y 2 Y let
�y : Y ! B��
 be de�ned by �y(y) = �(y) and �y(y

0) = 0 for y0 6= y. It suÆces

to prove that every �y extends to a valuation on X . For if �̂y is a valuation on X

extending �y, then �̂ =
P

y2Y �̂y is a valuation on X extending �. Fix a y 2 Y .
We claim that there exists a simple closed path ! with x1 = y and x2; . . . ; xk 6= Y ,
the notation being as in the �rst part of this proof. (Let T be a maximal tree in
�(�) whose extremal vertices are elements of Y . Let e1 be that edge incident with
y which does not belong to T and !1 the shortest path in T connecting the initial
and the terminal vertex of e1. We may take ! = e�11 (!1). De�ne �̂y, by �̂y(x) = 0

for x 6= x1; . . . ; xk and �̂y(xi) = f(e�1i�1�ei�1 . . . e
�1
1 �e1)�y(x1). Similarly as in the

�rst part of the proof it follows now, using f(!) = 1, that �̂y, is a valuation on X .

COROLLARY. If N(�) 6= f1g, then there exists an isotope of a Boolean
group which does not satisfy �.

Proof. In view of Lemma 3, given a non-trivial group word w(a; b; c), we
only need to �nd a Boolean group B and automorphisms �, �, 
 of B such that
w(�; �; 
) 6= 1. TakeB to be the countably in�nite Boolean group with independent
generators b1; b2; . . . . Every permutation of fbig de�ne an automorphism of B; so
AutB contains a copy of the countably in�nite symmetric group, and hence a copy
of the free group F . So there are �; �; 
 2 AutB such that, moreover, B��
 does
not satisfy any � with N(�) 6= f1g.

5. Proof of the Theorem: second part. Let � = ('1 ^ � � � ^ 'n) be a
crqq such that K4 cannot be embedded in �(�) and that N(�) = f1g. In view of
the corollary to Lemma 3 and the concluding sentence of Section 3 it suÆces to
prove, under the assumptions above, that � is true on every quasigroup.

First we show that every Æ'i consists of three elements. Assuming the con-
trary, there must be two edges e1, e2 connecting 'i with xp, for some i and p. They

bear di�erent labels; so the label of the closed path e1e
�1
2 is 6= 1 { a contradiction.

De�ne a subset A of X to be a separating set if A has at most two elements
and �(�) � A has two connected components. From [7, Lemma 6] it follows that
there exists a separating set whenever �(�) does not contain an embedded copy of
K4 and has more than two vertices of degree three.

We argue by induction on n. If n = 1, then � = ('1 ) '0) and it is easily
checked that coincidence of '0 and '1 is a necessary and suÆcient condition for
both N(�) = f1g and the satis�ability of � by all quasigroups.

So assume n > 1, which, as noted above, assures the existence of a separating
set. For every separating set A de�ne �(A) to be the minimum of the numbers of
vertices of degree three in the two components of �(�)�A. Let A0 be a separating
set with the smallest possible �-value. Let the components of �(�)�A0 be �1 and
�2 with �(A0) = the number of vertices of degree three in �2.
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First we prove that A0 has two elements. Assuming the contrary, let A0 =
fxpg, and let 'i be the vertex of �2 such that xp 2Æ 'i. Then Æ'i = fxp; xq ; xrg
and, since q 6= r, it is easy to see that either B = fxqg or B = fxq ; xrg is a
separating set and that �(B) < �(A0) { a contradiction.

Let then A0 = fxp; xqg and 'i and 'j be the vertices of �2 such that xp 2Æ 'i

and xq 2Æ 'j . We must have 'i 6= 'j , because otherwise the third edge xr of Æ'i

would make a separating set with �(fxrg) < �(A0). Considering xp and xq as

vertices of both �1 and �2, let �̂1 and �̂2 be obtained by identifying xp with xq in

�1 and �2 respectively. Call the new vertices y1 and y2. Obviously, both �̂1 and
�̂2 are of the form �(�0) for some crqqs �0 and K4 cannot be embedded in either
of them.

Now �̂2 contains only two vertices of degree three. For otherwise there would
be a separating set in �̂2. If B is such, and if B 63 y2, then B is a separating set for
�(�) too with �(B) < �(A0). If B = fy2; xsg, then B0 = fxp; xsg is a separating
set for �(�) with �(B0) < �(A0).

Thus 'i and 'j are the only vertices of degree in �2. Hence
Æ'i = fxp; xr; xsg

and Æ'j = fxq ; xr; xsg for some xr; xs. We may assume i; j > 0; otherwise we would
consider an equivalent crqq �k = (

V
l 6=k 'l ) 'k), k 6= i; j. The quasi-dentity �0

obtained by removing 'i and 'j from � contains one occurrence of each xp and
xq . Let �1 be obtained from �0 by replacing xp and xq in �0 by y1. Then �1 is a

crqq written in variables X � fxp; xq ; xr; xsg [ fy1g and �(�1) = �̂1.

Figure 2.

Let e1; . . . ; e6 be edges of �(�) as depicted in Fig. 2. From �(e1) 6= �(e2),
�(e4) 6= �(e5) and �(e1e

�1
4 e5e

�1
2 ) = 1 it follows that �(e1) = �(e4) and �(e2) =

�(e5), whence also �(e3) = �(e6). Therefore, 'j is obtained from 'i by replacing
xp by xq and so 'i ^ 'j ) xp = xq is an implication true on all quasigroups. It
follows that � is a consequence of �1, so � is true on all quasigroups provided �1

is.

Thus, it only remains to prove N(�1) = f1g. If ! is a closed path in �̂1 =
�(�1) which does not pass through y1 then ! can be considered as a path in �(�);
so 
(!) = 1. If ! is a simple closed path in �(�1) starting at y1, then either
!e�16 e4e

�1
1 or !e�13 e1e

�1
4 e6 is a closed path in �(�), and since 
(e16e4e

�1
1 e3) =


(e�13 e1e
�1
4 e6) = 1, it follows that 
(!) = 1 in this case too.
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Example. Consider the identity x1y1=(x3 n x2y1) = (y2x2=x3) n y2x1. The
quasiidentity associated with it is x1y1 = z1 ^ x2y1 = t1 ^ x3u1 = t1 ^ vu1 =
z1 ^ y2x1 = z2 ^ y2x2 = t2 ^ u2x3 = t2 ) u2v = z2, the graph of which is depicted
on Fig. 3. This is the smallest example showing that \N(�) = f1g ) � is isotopy
invariant" is not true in general. (We have just proved this under the additional

Figure 3.

assumption that K4 cannot be embedded in �(�).) Indeed, N(�) = f1g is visible
from Fig. 3. On the other hand, the identity above is true on every Abelian group,
but not on the isotope of the additive group of real numbers de�ned by x � y =
x+ 3

p
y.
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