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NONCOMMUTATIVE VALUATION RINGS

Elbert M. Pirtle

Abstract. Noncommutative valuation rings are duo rings: Every right ideal is a left ideal
and conversely. Properties of noncommutative valuation rings are compared to those of commu-
tative valuation rings. Noncommutative valuatiun rings are integrally closed. A noncommutative
valuation rings has all the properties of a commutative valuation ring if all its prime ideals are
invariant.

In [8], Schilling extended the concept of a valuation on a �eld to that of a
division ring as follows.

De�nition 1. Let D be a division ring. A valuation on D is a map v from
D onto G [ f1g, where (G; �;�) is a totally ordered group and 1 is an element
not in G, which satis�es the following: (i) v(0) = 1; (ii) v(ab) = v(a)v(b); (iii)
v(a + b) � min(v(a); v(b)) for all a; b 2 D. (here g � 1 = 1 =1 � g for all g 2 G,
as in the commutative case)

V = fx 2 Dj v(x) � eg is a subring of D called the valuation ring of v [8].
Lemma 3 of [8] shows that valuation rings are duo rings [1], [2], [9]. Neumann [6]
showed that every totally ordered group (commutative or noncommutative) is the
value group of some valuation. Thus the class of noncommutative valuation rings
is extensive. The purpose of this paper is to extend the theory of commutative
valuation rings to the noncommutative case.

Let R be an (not necessarily commutative) integral domain with identity
1 6= 0. R is called a duo ring [2] if every right ideal of R is a left ideal and
conversely. This is clearly equivalent to the condition that aR = Ra for all a 2 R.
In what follows, R is assumed to be duo. Then R has a left and right division ringD
of quotients [5]. We let D� denote the multiplicative group of nonzero elements of
D, and U denotes the muliplicative group of units of R. It was shown in [7] that U
is a normal subgroup of D�. As in the commutative case, D�=U is called the group
of divisibility of R. D�=U is partially ordered by de�ning xU � yU , x�1y 2 R,
and (D�=U;�) is a directed group [7]. (A partially ordered group (G;�) is directed
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if any pair a; b 2 G has a lower bound or equivalently an upper bound [3].) Clearly
R = fx 2 Dj 1U � xUg.

De�nition 2. A left (right) R-submodule I of D is called a left (right) frac-
tionary ideal of R if there is d 2 R, d 6= 0, such that Id � R (dI � R).

It follows that if I is a left (right) fractionary ideal of R and Id � R (dI �
R), then Id(dI) is a right (left) ideal of R and hence an ideal of R. As in the
commutative case, the set of principal franctionary ideals of R is F (R) = fRxjx 2
D; x 6= 0g. Since R is duo it follows that Rx = xR for all Rx 2 F (R).

We can now state the following theorem [4, p. 160].

Theorem 3. With R, U, D, D� as above, the following are equivalent.

(1) R is the valuation ring of some valuation v on D.

(2) The group of divisibility of R is totally ordered.

(3) The set of principal ideals of R is linearly ordered under �
(4) [8] If x 2 D, then either x 2 R or x�1 2 R.
(5) The set of ideals of R is linearly ordered under �.
(6) The set of principal fractional ideals is linearly ordered under �.
(7) The set of right fractionary ideals is linearly ordered under �.
(8) The set of left fractionary ideals of R is linearly ordered under �.

Proof. (1),(2) is just like the commutative case.

It is easy to see that if U is the multiplicative group of units of R, then
xU � yU , Rx � Ry. Thus (F (R);�) is order isomorphic to (D�=U;�) under
the map ' : D�=U ! F (R) de�ned by '(xU) = xR. Thus (2),(6).

Clearly (6))(3).

(3))(6) Let Rx, Ry be principal fractional ideals of R, where x = ab�1,
y = cd�1, a; b; c; d 2 R. Then db = bd0 for some d0 2 R, and Rx(bd0) and
Ry(db) are principal ideals of R. We may assume that Rx(bd0) � Ry(db) and thus
Rx � Ry.

(4),(2) D�=U is totally ordered , for x; y 2 D�, either xU � yU or yU �
xU , for x 2 D�, either xU � U or U � xU , x�1 2 R or x 2 R for any x 2 D�.

(5))(3) clear.

(3))(5) Let A, B be ideals of R. If A � B let a 2 A n B. For any b 2 B,
a 62 Rb, so b 2 Rb � Ra � A, and B � A.

It is clear that (7))(6) and (8))(6) since principal franctionary ideals are
both left and right fractionary ideals.

(6))(7) and (6))(8) are similar to (3))(5) and are omitted.

In [8] Schilling talks about prime ideals in noncommutative valuation rings
but never actually de�nes them. In [9] it was shown that prime ideals in duo rings
have the same characterization as prime ideals in commutative rings. We state the
following.
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Proposition 4. Let Q be an ideal of R. The folowing are equaivalent.

(i) Q is a prime ideal

(ii) For a; b 2 R, if ab 2 Q, then a 2 Q or b 2 Q
(iii) R nQ is a multiplicative system in R.

As in the commutative case, a multiplicative system is a sybset S of R such
that 0 62 S and s1s2 2 S for all s1; s2 2 S. We have the following corollary to
Theorem 1.

Corollary 5. Let R be a valuation ring and let P be a prime ideal of R.

Then R=P is a valuation ring.

Proof. R=P is duo since R is duo, and R=P is an integral domain since P is
prime. The ideals of R=P are linearly ordered since R is a valuation ring.

In [1] it was shown that when R is duo then radicals of ideals are characterized

exactly as in the commutative case, i.e., if A is an ideal of R, then
p
A = fx 2

Rjxn 2 Ag = TfP jP is a prime ideal and A � Pg.
Now, let R be a valuation ring which is not a division ring. Then R is duo

and we let D denote the division ring of quotients of R. If G is the value group of
the valution v on D which de�nes R, then P = fx 2 Rj v(x) > eg is the unique
maximal ideal of R and is prime. With the above notation and assumptions, we
have the following [4, p. 169].

Theorem 6. Let A be a proper ideal of R.

(1) If A is �nitely generated, then A is principal.

(2)
p
A is a prime ideal of R.

(3)
T
1

n=1A
n = P0 is a prime ideal of R. If Ak = Ak+1 for some k, then A is an

idempotent prirne ideal.

(4) Each prime ideal properly contained in A is contained in P0.

(5) If B is an ideal of R sach that A �
p
B then B contains a power of A.

Proof. We only show the �rst part of (3). The other statements are proved
exactly as in the commutative case [4, p. 171].

To prove the �rst part of (3) we show that R� P0 is a multipliactive system
in R. So let x; y 2 R{0. Then x 62 An and y 62 Am for some m, n. So An � Rx
and Am � Ry. Then AnRy � (Rx)(Ry) = Rxy. So An+m � Rxy, and xy 62 P0.

As in the commutative case we say that x 2 D is integral over R if there are
elements a0; a1; . . . ; an�1 such that xn + an�1x

n�1 + � � � + a1x + a0 = 0. Since R
is duo, the de�nition is equivalent to xn + xn�1bn�1 + � � �+ xb1 + b0 = 0 for some
b0; . . . ; bn�1 2 R.

De�nition 7. R is integrally closed if x 2 D and x integral over R implies
x 2 R.

Proposition 8. Valuation rings are integrally closed.
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Proof. Valuation rings are duo rings, and the proof is like the commutative
case. Let V be a valuation ring with D as the division ring of quotients of V .
Let x 2 D be integral over V , say xn + an�1x

n�1 + � � � + a1x + a1x + a0 = 0.
If x 62 V then x�1 2 V . Then xn = �a0 � a1x � � � � � an�1x

n�1 and x =
�a0(x�1)� a1(x

�1)n�2 � � � � � an�1 � V , a contradiction.

Let V be a valuation ring with D as division ring of quotients. Then V is a
right and left Bezout domain [10], and by the theorem in [10], if V 0 is a ring such
that V � V 0 � D, then V 0 = VS for some saturated multiplicative system S in V .
Thus S = R nSP� for some collection of prime ideals fP�g of V [7]. Since fP�g is
totally ordered S = V � P for some prime ideal P of V , and V 0 < VS = VP . In [7]
we constructed quotient rings RS , where R is an integral domain which is duo and
S is a saturated multiplicative system in R. It was shown in [7] that RS is duo if
and only if x�1Sx = S for all nonzero x 2 R (S is invariant [7]). When S = R�P ,
S is invariant if and only if P is invariant. We can now state the following

Propostion 9. Let V 0 be a ring such that V � V 0 � D. Then (1) V 0 = VP
for some prime ideal P of V. (2) V 0 is a valuation ring , P is an invariant prime.

Schilling in [8] showed that there is a 1-1 correspondence between the prime
ideals of a valuation ring V and the convex subgroups of the value group G of V .
The correspondence is also 1-1 between invariant primes of V and invariant convex
subgroups of G.

Let V be a valuation ring with value group G.

Corollary 10. Every overring of V is a valuation ring , every convex

subgroup of G is normal.

Corollary 11. If G is Abeliean then every overring of V is a valuation

ring.

Corollary 12. If G satis�es the maximum or minimum condition on nor-

mal subgroups then every overring of V is a valuation ring.

Proof. [3, p. 54, Corollary 14].

There exist valuation rings V with prime ideals P that are not invariant.

For let G be a totally ordered group which has a convex subgroup H which
is not invariant. (See [3, p. 19]). There exists a valuation ring V with G as value
group [6]. Let P be the prime ideal of V which corresponds to H . Then P is not
invariant, and VP = fs�1aj s 2 V � P; a 2 V g = fas�1j s 2 V P; a 2 V g is a ring
[7] with the following properties: (a) VP is not a duo ring, hence not a valuation
ring from [8]; (b) V � VP � D.

REFERENCES

[1] V. R. Chandran, On duo-rings, Lincei-Rend. Sci. Fis. Mat. Natur. 58 (1975), 823{827.

[2] E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89
(1958), 79{91.



Noncommutative valutation rings 87

[3] L. Fuchs, Partialy Ordered Algebraic Systems, Addison Wesley, 1963.

[4] R. Gilmer, Multiplicative Ideal Theory, PartI, Quin's Papers on Pure Appl. Math. 12,
Quieen's Univ., Kingston, Ontario, Canada, 1968.

[5] I. N. Herstein, Noncommutative Rings, Carus Mathematical Monographs, 1968.

[6] B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202{252.

[7] E. M. Pirtle, Locazation in duo rings, Publ. Math. Debrecen 31 (1984), 47{52.

[8] O. F. G. Schilling, Noncommutative valutations, Bull. Amer. Math. Soc. 51 (1945), 297{
304.

[9] G. Thierrin, On duo rings, Canad. Math. Bull. 3 (1960), 167{172.

[10] R. A. Beauregard, Overrings of Bezout domains, Canad. Math. Bull. 16 (1973).

Department of Mathematics (Received 12 09 1983)
niversity of Missouri (Revised 15 07 1985)
Kansas City, MI 64110
USA


