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ON SOME CLASSES OF LINEAR EQUATIONS, V

Jovan D. Ke�cki�c

Abstract. The main object of this paper is to establish some conditions which ensure the
validity of (1), where A, B are linear operators on a vector space. The obtained results are then
applied to the equation P (L)u = 0, considered earlier in [1], [2], [3] where P is a polynomial and
L a linear operator. This last result is applied to some partial di�erential equations considered in
[6].

1. Introduction. The general solution of the di�erential equation

(D � I)(D � 2I)u = 0 (D = d=dx; Iu = u)

namely
u = C1e

x + C2e
2x (C1; C2 arbitrary constants )

is the sum of the general solutions of the equations

(D � I)u = 0 and (D � 2I)u = 0;

in other words

ker(D � I)(D � 2I) = ker(D � I) + ker(D � 2I):

Similarly,

ker(D2 � 3D + 2I)(D � 3I) 6= ker(D2 � 3D + 2I) + ker(D � 3I)

and

ker
@2

@x@y
= ker

@

@x
+ ker

@

@y
;

but
ker(D2 � 3D + 2I)(D � 2I) 6= ker(D2 � 3D + 2I) + ker(D � 2I)

and

ker
@3

@x2@y
6= ker

@2

@x@y
= ker

@

@x
;
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where we have supposed that the operators act on suÆciently di�erentiable func-
tions.

In this paper we shall �rst examine when will the equality

kerAB = kerA+ kerB

hold where A, B are linear operators on a vector space V , and we shall apply the
obtained results to the equation in u : P (L)u = 0, where P is a polynomial and L
linear operator. This equation was considered in [1] { [3].

2. The kernel of the product of two linear operators. Suppose that
V is a vector space over a �eld � and that A;B : V ! V are linear operators. In
this section we shall give three theorems which sure the validity of

(1) kerAB = kerA+ kerB;

the �rst two give suÆcient and the third gives necessary and suÆcient conditions
for the validity of (1).

Before we prove those theorems notice that:

(i) it is convenient to assume that the operators A and B commute; otherwise
a solution of Au = 0 need not be a solution of ABu = 0,

(ii) if AB = BA, then the inclusion

kerA+ kerB � kerAB

takes place, and as we know it can be proper;

(iii) if AB = BA and if one of the operators A or B is invertible, than the
equality clearly true; we shall (1) therefore always suppose that and A and B are
not invertible, i.e. that dim kerA � 1, dimkerA � 1.

Theorem 1. If A, B are linear operators mapping V into V such that:

(i) AB = BA;

(ii) kerA \ kerB = f0g (0 is the zero vector of V )

(iii) kerA, kerB and kerAB are �nite-dimensional, then

kerAB = kerA� kerB:

Proof. From kerA� kerB � kerAB follows

dim(kerA� kerB) � dimkerAB:

On the other hand for any two operators A and B we have (see, for example, [4,
p. 135])

dimkerAB � dimkerA+ dimkerB;

and since the sum of kerA and kerB is direct,

dimkerA+ dimkerB = dim(kerA� kerB)
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implying
dimkerAB � dim(kerA� kerB):

Hence,
dimkerAB = dim(kerA� kerB);

and since the above subspaces of V are �nite-dimensional, this means that

kerAB = kerA� kerB;

and the proof is complete.

Remark. If the condition (ii) is suppressed, then the equality (1) need not
take place. Indeed, the di�erential equation

(2) u000 � 2u00 � 4u0 + 8u = 0

with the general solution u = (C+Dx)e2x+Ee�2x; C, D, E are arbitrary constants;
can be written in the form

(3) ABu = 0

where

A =
d

dx
� 2I; B =

d

dx2
� 4I (Iu = u):

The conditions (i) and (iii) of Theorem 1 are satis�ed, but the condition (ii) is not,
and the sum of the general solutions of Au = 0 and Bu = 0 is not the general
solution of (2).

On the other hand, (2) can also be written in the from (3) where

A =
d2

dx2
� 4

d

dx
+ 4I; B =

d

dx
+ 2I:

In this case all the conditions of Theorem 1 are satis�ed and the general solution
of (2) is the sum of the general solutions of Au = 0 and Bu = 0.

Notice, however, that (ii) is not a necessary condition for the validity of (1).
Indeed, if V is the space of all real di�erentiable functions in x and y, A = @=@x,
B = @=@y, then kerA \ kerB is the set of all constant functions, but still (1) is
true.

Before we formulate the second theorem, we recall that for any linear operator
A : V ! V there exists the so-called generalized inverse A which is also linear and
AAA = A. See [5].

Theorem 2. If A, B are linear operators mapping V into V such that

(i) AB = BA; (ii) AB = BA;

then the equlity (1) is valid.

Proof: The proof of this theorem is based upon the fact that the general
solution of the equation Au = 0 is u = t�AAt, where t 2 V is arbitrary. A proof
of this fact is given in [5].
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Hence, the equations Au = 0, Bu = 0 have the following general solutions
u = t�AAt and u = p�BBp respectively, where t; p 2 V are arbitrary, and their
sum is

(4) u = t�AAt+ p�BBp (t; p 2 V arbitrary ):

We now prove that the conditions (i) and (ii) imply that a generalized inverse
AB of AB is �B �A. Indeed,

AB �B �AAB = ABBABA = ABBBAA = ABAA = BAAA = BA = AB;

implying that AB = �B �A.

But then the general solution of ABu = 0 is

(5) u = q �BAABq (q 2 V arbitrary)

Finally, let us show that the expressions (4) and (5) are equivalent. First, (4)
is contained in (5) which is seen by setting q = t�AAt+ p = BBp. Conversely, if
we put t = q, p = AAq in (4) we get

u = q �AAq +AAq �BBAAq = q � �B �AABq;

i.e. (5). Hence, the equality (1) is valid.

Example. Let V be the space of all real functions and de�ne A : V ! V by
Af(x) = f(x) + f(�x). A generalized inverse of A is A = I=2 (I is de�ned by
If(x) = f(x)) and hence it commutes with any other linear operator B : V ! V .
Therefore, if B commutes with A, the general solution of the equation ABu = 0 is
the sum of the general solutions of the equations Au = 0 and Bu = 0. For example,
let B be the di�erence operator, i.e.

Bf(x) = f(x+ 1)� f(x):

Then the equation ABf(x) = 0 becomes

f(x+ 1)� f(x) + f(�x� 1)� f(�x) = 0

and its general solution is

f(x) = P (x) +A(x) �A(�x);

where A is an arbitrary function and P is an arbitrary periodic function with period
1.

As a corollary of Theorem 2, we obtain the following result:

If A commutes with its generalized inverse A, then

kerAn = kerA (n 2 N):

Example. Suppose that M is a square matrix which satis�es the equality
M2 =M + I (I is the unit matrix). The operator A de�ned by

A(X) =MX �XM
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has a generalized inverse A de�ned by A = (1=5)A, and hence AA = AA. Therefore
the equations A(X) = 0 and A2(X) = 0, i.e. MX �XM = 0 and

2X +MX � 2MXM +XM = 0

have the same general solution, namely

X = 3T �MT + 2MTM � TM;

where T is an arbitrary matrix.

Remark. The condition (ii) of Theorem 2 can be replaced by: AB = BA.

Theorem 3. If A;B : V ! V are commutative linear operators, then the

conditions

(6) (8v 2 kerA)(9w 2 kerA)(Bw = v); i.e. kerA � B(kerA)

and

(7) kerA+ kerB = kerAB

are equivalent.

Proof. The equation

(8) ABu = 0

is equivalent to the system

(9) Bu = v; Av = 0

According to (6), for any v 2 kerA exists w = wv 2 kerA such that Bwv = v.
Hence, the general solution of the system (9), i.e. of the equation (8) has the form

(10) u = w + z;

where w 2 kerA, and z 2 kerB is arbitrary. Conversely, from (10), where w 2 kerA
and z 2 kerB are arbitrary, follows (8), and hence we have proved that (6) implies
(7).

In order to prove that (7) implies (6), start with (7) and the negation of (6)
which reads

(11) (9v 2 kerA)(8w 2 kerA)(Bw 6= v); i.e. B(kerA) � kerA

But then (11) implies two possibilities for the system (9):

(i) it has no solutions, which directly contradicts (7); or (ii) the equation
Bu = v has a solution u = wv 62 kerA, and thus the general solution of (9) is
u = wv+z (z 2 kerB arbitrary). But since wv 62 kerA and wv 62 kerB (this follows
from the fact that (11) implies v 6= 0) we conclude that wv + z 62 kerA + kerB,
contradicting (7). Hence we have proved that (7) implies (6).
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Example. For an example we again turn to the equation (2) written in the
form (3) with

A =
d

dx
� 2I; B =

d2

dx2
� 4I:

The condition (6) is not ful�lled, since e2x 62 kerA, and the solution of Bu = e2x

is u = C1e
2x + C�2xe + 1

4xe
2x 62 kerA. On the other hand, if (2) is written in the

form (3) with

A =
d2

dx2
� 4

d

dx
+ 4I; B =

d

dx
+ 2I;

then the condition (6) is satis�ed, which is easily veri�ed.

Remark. The condition (6) can be replaced by

(8v 2 kerB)(9w 2 kerB)(Aw = v); i.e. kerB � A (kerB)

3. Application to the linear equation P (L)u = 0. Suppose now that
V is a commutative algebra with identity (denoted by i) over R or C, L is a
linear operator mapping V into V , and that P is an n-th degree polynomial with
coeÆcients in R or C. In [1] we considered the linear equation in u:

(121) P (L)u = 0

and obtained its general solution in the form

(13) u =

nX
k=1

ckuk;

where ck 2 kerL are arbitrary, and Luk = �kuk, P (�k) = 0 (k = 1; . . . ; n);�i 6= �j ;
for i 6= j, but we had to make some further assumptions regarding L. Roughly
speaking, it was not enough to suppose that L is linear, but something also had to
be known about the action of L on the product uv, and we therefore introduced
three special classes of operators (e.g. the class H(V ) consists of all linear operators
L : V ! V which satisfy

L(uv) = uLv , u 2 kerL:

Some important operators (such as the derivatives d=dx, @=@x or the di�erence
operator �) satisfy the above condition, but some simple enough operators, such
as d2=dx2, @2=@x2, @2=@x@y do not.

We shall now show that (13) is the general solution of (12) with no other
supposition on L (except that it is linear), but c1; . . . ; cn will have a di�erent
meaning. We begin with a de�nition.

De�nition. Suppose that u� is a characteristic vector of L and that � is the
corresponding characteristic value, i.e. that Lu� = �u�. We say that c 2 C(�) � V
if and only if L(cu�) = cLu� (= �cu�).
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The class C(�) is not empty for any �. Indeed, if a is an arbitrary scalar,
then �i 2 C(�).

Lemma 1. Suppose that � and u� hare the same meaning as in the above

de�nition. Then the general solution of the equation

(14) (L� �I)u = 0 (I is the idenlity: Iu = u)

is u = cu� where c 2 C(�) is arbitrary.

Proof. From Lu = �u and Lu� = �u� follows���� u u�
Lu Lu�

���� = 0;

which implies

(15) u = cu�

and

(16) Lu = cLu�

where c 2 V . But from (15) follows Lu = L(cu�) which together with (16) implies
L(cu�) = cLu�. Hence, any solution of (14) has the form (15) with c 2 C(�).
Conversely, if c 2 C(�) it is easily shown that (15) satis�es (14).

Lemma 2. If u� and u� are characteristic vectors of the linear operator

L : V ! V and if � and � are the corresponding characteristic values and � 6= �,
then the general solution of the equation

(17) (L� �I)(L� �I)u = 0

is

(18) u = c1u� + c2u�

where c1 2 C(�) and c2 2 C(�) are arbitrary.

Proof. The operators A = L � �I and B = L � �I with � 6= � satisfy the
conditions of Theorem 3. Indeed, they are clearly commutative. Moreover, for

any c 2 C(�) the equation (L � �I)u = cu� has a solution, namely u =
c

��
u�

which belongs to ker(L � �I), which means that (6) is also ful�lled. Hence, the
general solution of (17) is the sum of the general solutions of (L � �I)u = 0 and
(L� �I)u = 0, i.e. according to Lemma 1, it is given by (18).

The above proof is easily extended to handle the case of n distinct character-
istic values. In other words, we have

Theorem 4. If u�1 ; . . . ; u�n are characteristic vectors of the lirrear operator

L : V ! V and if �1; . . . ; �n are the corresponding characteristic values (�i 6= �j
for i 6= j), then the general solution of the equation

nY
k=1

(L� �kI)u = 0
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is

(19) u =

nX
k=1

cku�k

where ck 2 C(�k) are arbitrary (k = 1; . . . ; n).

This theorem can be formulated in the following equivalent way:

Theorem 5. Suppose that u�1 ; . . . ; u�n are characteristic vectors of the linear

operator L : V ! V and that �1; . . . ; �n are the corresponding characteristic values

(�i 6= �j for i 6= j), which are at the same time zeros of the n-th degre polynomial

P. Then the general solution of the equation P (L)u = 0 is given by (19), where
ck 2 C(�k) are arbirrary (k = 1; . . . ; n).

4. A result of J. Abramowich. Throughout this section we shall be con-
cerned with functions mapping R2 into R whose partial derivatives of the required
order exist in an open region of R2. J. Abramowich [6] recently showed that the
function En de�ned by

(20) En(z) =

1X
k=0

zk

(k!)n

can be used for solving partial di�erential equations, since for example, E2(�xy) is
the characteristic vector of the operator D = @2=@x@y, i.e. DE2(�xy) = �E2(�xy).
In connection with that he introduced the following de�nition:

De�nition A. A function C = C(x; y) will be said to be a \D-constant"
function if

(21) D(CE2(�xy)) = �CE2(�xy) (� = const );

with D = @2=@x@y, and stated the following theorem1:

Theorem A. Let �; . . .�n be distinct roots of P (�) = �n+�1�
n�1+� � �+�0 =

0. Then the general solution of the homogeneous equation P (D)u = 0, where

D = @2=@x@y, is given by

(22) u(x; y) =

nX
k=1

CkE2(�kxy);

where Ck are D-constant functions.

There are two comments which we wish to make. First, De�nition A is not
correct in the sense that the D-constant function de�ned by (21) clearly depends

1Abramowich actually stated his theorem in such a way that it also handles the case of
multiple roots of P (�) = 0, but we shall not be concerned with that question here.
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on �. In fact, as Abramowich showed himself, the form of a D-constant function
is:

CE2(�xy) = g(x) + h(y) + �

xZ

0

yZ

0

(g(s) + h(t))E2(�(x � s)(y � t))dsdt:

It would have been better to say that, for example, C is a D�-constant function.
Also the functions C1; . . . ; Cn which appear in (22) cannot be described simply as
D-constant functions, but Ck is a D�k -constant function (k = 1; . . . ; n).

Secondly no proof of Theorem A was given in [6] { it was merely stated that
the proof is identical to that of the corresponding theorem for ordinary di�erential
equations, as given in [7, Chapter VI). However, the proof given in [7] is based
upon the (previously proved) fact that the general solution of a linear di�erential
equation of order n contains n arbitrary constants. Since no such representation is
known for the general solution of the equation P (D)u = 0, with D = @2=@x@y, the
mentioned proof cannot be used.

Nevertheless, applying Theorem 5, we see that the correct version of Theorem
A is as follows:

Theorem 6. Let �1; . . . ; �n be distinct roots of P (�) = �n + �1�
n�1 + � � �+

�0 = 0. Then the general solution of the homogeneous equation P (@2=@x@y)u = 0
is given by

u(x; y) =
nX

k=1

CkE2(�kxy)

where C1; . . . ; Cn are arbitrary functions satisfying

@2

@x@y
CkE2(�kxy) = �kCkE2(�kxy) (k = 1; . . . ; n):

The case when some of the �k's are multiple roots of P (�) = 0 cannot be
treated by this technique.

Remark. It is easily veri�ed that

1X
k=0

�kxmkynk

(mk)!(nk)!
(m;n 2 N)

is a characteristic vector of the operator @m+n=@xm@yn and that � is the cor-
responding characteristic value. Hence, Theorem 5 can also be applied to linear
equations of the form P (D)u = 0 where D = @m+n=@xm@yn.

Remark. Notice that there exist much simpler characteristic vectors u� of
@2=@x@y than E2(�xy) e.g. u� = e�x+y. However, the problem of describing the
class of all D�-constant functions, i.e. the functions which satisfy

@2

@x@y
cu� = c

@2

@x@y
u�
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which Abramowich solved in the case where u� = E2(�xy) remains open. For the
case when u� = e�x+y it reduces to the equation

@2

@x@y
+

@c

@x
+ �

@c

@y
= 0:
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