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AN APPLICATION OF CIRCUIT POLYNOMIALS TO THE

COUNTING OF SPANNING TREES IN GRAPHS

E. J. Farrell and J. C. Grell

Abstract. t is shown that the number of spanning trees in a graph can be obtained from
the circuit polynomial of an associated graph. From this, the number of spanning tress in a regular
graph is shown to be obtainable from the characteristic polynomial of a node-deleted subgraph.
Finally, Cayley's theorem for the number of labelled tress is derived.

1. Introduction

The graphs considered here will be �nite and may contain loops and multiple
edges. Let G be a graph. A circuit or cycle corer in G, is a spanning subgraph of G
whose components are all cycles. We will take an isolated node, or in some cases,
a loop, to be a cycle with one node. A cycle with two nodes will either be an edge,
or in some cases, the multigraph consisting of two nodes joined by a pair of edges.
Cycles with more than two nodes will be called proper cycles. A cycle with r nodes
will be denoted by Zr.

Let us associate an indeterminate or weight w� with every cycle a in G, and
with every cycle cover S, the weight w(S) =

Q
w�

, where the product is taken over

all the components of S. Then the circuit polynomial of G is C(G;w) =
P

w(S),
where w is a vector of weights and the summation is taken over all the cycle covers
in G. The basic properties of circuit polynomials are given in Farrell [4].

In this paper, we will obtain the number of spanning tress in a graph as a
specially weighted circuit polynomial. From this, we will deduce that the number of
spanning trees in a regular graph can be obtained from the characteristic polynomial
of an associated graph. We will then derive Cayley's formula for the number of
labelled trees with p nodes.

Let G be a graph and vi node of G. By G � vi, or simply G0 (when it is
unnecessary to specify vi), we will mean, the graph obtained from G by removing
node vi. The characteristic polynomial of G will be denoted by '(G;x) where x is
an indeterminate. The number of spanning trees in G will be denoted by �(G).
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2. Preliminary Results

In this section, we will give, without proofs, some results which will be vital
to the material which follows. The relation between the circuit polynomial and the
characteristic polynomial of a graph was established in Farrell [3]. It is given in
the following lemma.

Lemma 1. Let G be a graph and C(G;w) its circuit polynomial in which a

weight wr is given to each circuit with r nodes. Then

'(G;x) = C(G; (x;�1;�2;�2;�2; . . . ;�2)):

The following result was derived in Farell and Grell [5]. It establishes a
connection between circuit polynomials and determinants of matrices.

Lemma 2. M = (mij) be a p � p symmetric matrix. Let Gm be a graph

associated with M as follows. Gm has node set fv1; v2; . . . ; vng. Nodes vi and vj
are joined by an edge labelled mij , i� mij 6= 0. Also, at each node vi of Gm there

is a loop labelled mii. Then jM j = C(Gm;w), where wvi = mii, wvivj = �m2
ij and

w(Zr) = (�1)r+12
Qr

k=1mikjk , where mikjk (k = 1; 2; . . . ; r) are the labels on the

edges of Zr.

This lemma has been further generalized to cover all square matrices. A full
discussion of the lemma and its generalizations can be found in [5]. We note that
when applying this lemma, a circuit with one node is taken to be a loop.

3. The Main Theorems

Let G be a labelled graph with p nodes and with adjacency matrix A. Let
M = (mij) be the p�p matrix obtained from �A, by replacing aii by di, the degree
of node i. The famous Matrix-Tree theorem (due to Kirchho� [8]) states that all
the (p � 1) � (p � 1) principal minors of M are numerically equal, and that their
common value is the number of spanning trees in G.

Since M is symmetric, its determinant can be evaluated by using Lemma 2.
All we need to do now, is to �nd a relation between the given graph G and the
graph Gm. Suppose that G has nij edges joining nodes i and j. Then we will have
mij = �nij ; and in Gm nodes vi and vj will be joined by, an edge, labelled �nij .
Since mii = di, it follows that each node vi of Gm, will have a loop labelled di.
Hence we have the following lemma.

Lemma 3. Let G be a labelled graph with p nodes and possibly with multiple

edges. Let M be the matrix associated with G by the Matrix-Tree theorem. Then

the graph Gm associated with jM j by Lemma 2, is obtained, from G as follows:

(i) Replace the nij edges joinig nodes i and j by a single edge vivj labelled �nij .

(ii) Add a loop labelled di to each node i of G.

This lemma, together with Lemma 2, yield the following theorem.
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Theorem 1. Let G be a graph, possibly with multiple edges. Let nij be the

number of edges joining nodes i and j. Let Gm be the graph obtained from G as

described in Lemma 3. Then �(G) = C(Gm � v;w), for any node v of Gm, where

wvi = di, wvivvj = �n2ij and w(Zr) = �2
Qr

k=1 nikjk .

Proof. It can be easily seen that the removal of node vi from Gm yields a
graph G0

m associated with a �rst principal minor of M , since this operation does
not a�ect any of the labels in the subgraph G0

m. Therefore the result follows from
Lemma 2. �

We will call two graphs cocircuit, if they have the same circuit polynomial
(with respect to a given �xed weight). The following corollary is immediate from
the Matrix-Tree theorem.

Corollary 1.1. The node-deleted subgraphs of Gm are all cocircuit graphs

under the weight assignment de�ned in the theorem.

This corollary suggests that the graph G0

m can be judiciously chosen so as to
minimize the amount of computations involved in applying Theorem 1.

Suppose that G is a strict graph i.e. G has no loops nor multiple edges. Then
Gm is obtained from G by putting labels of �1 on each edge and attaching a loop
labelled di to each node i of G. Since Gm contains no multiple edges, we can assign
weights uniquely as follows: A cycle with r (> 1) nodes will be given a weight wr ,
i.e. w(Zr) = wr for r > 1. In this case we again take Z1 to be an isolated loop and
asign the weight di { the degree of node i in G, to loop vi in Gm. Our discussion
leads to the following theorem.

Theorem 2. Let G be a strict graph, and let w = (wvi ; w2; w3; . . . ). Then

�(G) = C(G0

m; (di;�1;�2;�2; . . . ;�2))

i.e. the circuit polynomial in which node vi is given the weight di, edges are given

the weight �1 and proper cycles are given the weight �2.

Proof. The result follows immediately from Theorem 1, by putting nij = 1,
for i 6= j and i, j adjacent in G. �

In the case of a strict d-regular graph, it will be unnecessary to add loops to
G. Instead, each node can be given a weight d, and G0 used instead of G0

m.

Corollary 2.1. Let G be a strict graph, regular of degree d. Then

�(G) = C(G0; (d;�1;�2;�2; . . . ;�2)):
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The cycle covers of Gm � v3 are (i) the three loops; (ii) edge v1v2 and the
loop at v4; (iii) edge v1v4 and the loop at v2. The weights of these covers are (i)
3 � 3 � 2 = 18; (ii) �1 � 2 = �2 (iii) �1 � 3 = �3. Hence we get from Theorem 1:
�(G) = C(G0

m;w) = 18� 2� 3 = 13.

Notice that Gm � v4 is the triangle with loops at each of its nodes. It can be
easily veri�ed that

C(Gm � v4;w) = 3 � 3 � 4� (22 � 3 + 12 � 3 + 12 � 4) + 2(�2)(�1)(�1) = 13;

in agreement with Corollary 1.1.

4. Some Applications

The following theorem is immediate from Lemma 1 and Corollary 2.1.

Theorem 3. Let G be a strict graph, regular of degree x. Then �(G) =
'(G;x).

Theorem 3 is a useful result in Spectral Theory. It was �rst mentioned by
Hutschenreuter [7], and was used by Cvetkovi�c [1] to determine the number of
spanning trees in several classes of regular graphs. This result has since been
extended to non-regular graphs by Cvetkovi�c and Gutman [2].

Let us denote by Kp, the complete graph with p nodes. The characteristic
polynomial of Kp is given by Harary et al [6] as

'(Kp;x)� (1 + x� p)(1 + x)p�1 (1)

An independent derivation of this result from the corresponding result for circuit
polynomials is given in [4]. We can use Equation (1) to derive Cayley's famous
formula, for the number of labelled trees with p nodes.

Theorem 4. The number of labelled trees on p nodes is pp�2.

Proof. Each labelled tree on p nodes is a spanning tree of Kp, and vice versa.
Therefore the number of labelled trees on p nodes is �(Kp). But Kp is strict and
regular of degree p� 1. Therefore from Theorem 3, we get

�(Kp) = '(Kp�1; p� 1) = (1 + (p� 1)� (p� 1))pp�2 = pp�2: �

REFERENCES

[1] D. M. Cvetkovi�c, The spectral method for determining the number of trees, Publ. Inst.
Math. (Beograd) (N.S.) 11 (25) (1971), 135{141.

[2] D. M. Cvetkovi�c and I. Gutman, The new spectral method for Determining the number of
spaninng trees, Publ. Inst. Math. (Beograd) (N.S.) 29 (43) (1981), 49{52.

[3] E. J. Farrell, On a general class of graph polynomials, J. Combinatorial Theory, Ser. B, 26
(1979), 111{122.



An application of circuit polynomials to the counting of spanning trees in graphs 67

[4] E. J. Farrell, On a class of polynomials obtained from the circuits in a graph and its
application to characteristic polynomials of graphs, Discrete Math. 25 (1979), 121{133.

[5] E. J. Farrell and J. C. Grell, On circrcit polynomials and detercninants of matrices, sub-
mitted.

[6] F. Harary, C. King, A. Mowshowitz and R. C. Read, Cospectral graphs and digraphs, Bull.
London Math. Soc. 3 (1971), 321{328.

[7] H. Hutschenreuter, Einfacher Beweis des Matrix-Gerust-Stazes der Netzwerktheorie, Wiss.
Z. Techn. Hochsch. Illmenau 13 (1967), 403{404.

[8] G. Kirchho�, Uber die Au�osung der Gleichungen, auf welche man bei der Unlersuchung
der linearen Verteilung galvanischer str�ome gef�uhrt wird, Ann. Phys. Chem. 72 (1847),
497{508.

Department of Mathematics (Received 03 06 1985)
The University of the West Indie
St. Augustine, Trinidad


