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SOME RELATIONS FOR GRAPHIC POLYNOMIALS

Ivan Gutman

Abstract. Let G be a graph and A and B its two subgraphs with disjoint vertex sets. A
number of results is obtained, relating the characteristic, matching and �-polunomials of G, G-A,
G-B and G-A-B.

Introduction. In the present paper we shall consider simple graphs without
loops and multiple edges, and three polynomials associated with them. These are
the characteristic [2], the matching [1,3] and the �-polynomial [5]. They will be
denoted by '(G), a �(G) and �(G), respectively with G standing for the corre-
sponding graph.

Let G be a graph with n vertices, v1; v2; . . . ; vn. Its adjacency matrix A

is square matrix of order n whose element in the i-th row and j-th column is
equal to one if the vertices vi and vj are adjacent, and is equal to zero otherwise.
The characteristic polynomial of A is called the characteristic polynomial of the
respective graph [2]. Hence, if I is the unit matrix of order n then '(G) = '(G; x) =
det(x I� boldA).

Denoting by m(G; k) the number of selections of k independent edges of the
graph G (i. e. the number of its k-matchings), the matching polynomial of G is
de�ned as [1,3]

�(G) = �(G; x) = xn +

n=2X
k=1

(�1)km(G; k)xn�2k :

If the graph G is acyclic, then by de�nition, �(G) = �(G). Since the charac-
teristic and the matching polynomial of an acyclic graph coincide [1,3,4], in this
case we also have �(G) = '(G).

In order to de�ne the �-polynomial of a cyclic graph, suppose that G possesses
r (r > 0) circuits Z1; . . . ; Zr, and associate a parameter ti with Zi, i = 1; . . . ; r.
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Then [5]

�(G) = �(G) + 2
X
i

ti�(G� Zi) + 4
X
i<j

titj�(G � Zi � Zj)

� � � �+ (�2)rt1t2 . . . tr�(G� Z1 � Z2 � � � � � Zr)

(1)

with the following conventions:

(a) lf among the circuits Zi1 ; Zi2 ; . . . ; Zik of G at least two of them possess at least
one common vertex, then �(G� Zi1 � Zi2 � � � � � Zik) � 0.

(b) If the circuits Zi1 ; Zi2 ; . . . ; Zik embrace all the vertices of G, then �(G� Zi1 �

Zi2 � � � � � Zik ) � 1.

The �-polynomial is a generalization of both the matching and the charac-
teristic polynomial. From (1) it is evident that for t1 = t2 = � � � = tr = 0, �(G)
reduces to a �(G). It can be shown [5] that for t1 = t2 = � � � = tr = 1, �(G)
coincides with '(G).

The concept of the �-polynomial was developed in connection with some prob-
lems of theoretical chemistry. The chemical applications of the �-polynomial are
elaborated in [5], where a number of its basic properties has also been established.
Among them we shall need the following three.

If the graph G is composed of components G1; G2; . . . ; Gc, then we shall write
G = G1 uG2 u � � �uGc.

Lemma 1. �(G1 uGZ u � � �uGc) = �(G1)�(G2) . . .�(Gc).

Lemma 2. Let G be an arbitrary graph and u its vertex: Then

�(G) = x�(G � u)�
X
j

�(G� u� vj)� 2
X
k

tk�(G� Zk): (2)

The �rst summation on the r. h. s. of (2) goes over all vertices vj which are
adjacent to u; the second summation goes over all circuits Zk which contain the
vertex u.

Lemma 3. Let e be an edge of G, connecting the vertices u and v. If e does
not belong to any circuit of G, then �(G) = �(G� e)� �(G� u� v).

For the characteristic and matching polynomial of a graph and some of its
subgraphs two peculiar relations hold.

Lemma 4. If G is a graph and u and v are two distinct vertices, of G then

'(G� u)'(G� v)� '(G)'(G � u� v) =

"X
i

'(G � Pi)

#2
(3)

�(G � u)�(G� v)�(G)�(G � u� v) =
X
i

[�(G � Pi)]
2 (4)
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In both expressions Pi denotes a path and the summations go over all paths
in G, which connect the vertices u and v.

Formula (3) is a graph-theoretical reinterpretation of a long-known result for
determinants [7], whereas (4) was discovered by Heilmann and Lieb [6].

As a matter of fact, in the theory of determinants the following result of
Jacobi from 1833 is known [7, Theorem 1.5.3]. Let

D =

������
a11 . . . a1n
. . . . . . . . .
an1 . . . ann

������
be a determinant of order n. LetM be a k-rowed minor ofD,M� the corresponding
minor of the adjungate of D and ~M the cofactor of M in D. Then M� = Dk�1 ~M .
For k = 2 we get as a special case of the above equation����Auu Auv

Avu Avv

���� = D �Duv;uv

where Auv is the cofactor of the element auv and Duv;uv, is the determinant of
order n�2 obtained when the r-th and the s-th rows and columns are deleted from
D. This yields AuuAvv �D �Duv;uv = (Auv)

2.

Suppose now that D is equal to det (xI � A). Then from the de�nition of
the characteristic polynomial of a graph, we immediately have D = '(G), Auu =
'(G� u), Avv = '(G � v) and Duv;uv = '(G� u� v). The fact that

Auv =
X
i

'(G;Pi)

is just another formulation on Coates' formula [2, p. 47].

The main results. In this section we report some relations for the �-
polynomial, whose form is similar to that of eqs. (3) and (4). The following two
theorems and their corollaries are our main results.

Let A, B, X and Y be rooted graphs. Let H be another graph and u and
v two distinct vertices of H . Construct the graph G by identifying the roots of A
and X with u, and by identifying the roots of B and Y with v (Fig. 1).
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Theorem 1. Let A0, B0, X 0 and Y 0 denote the subgraphs obtained by deleting
the rooted vertex from A, B, X and Y, respectively. Then,

�(G�A)�(G �B)� '(G)'(G �A�B) = �(A0)�(B0)�(X 0)�(Y 0)

[�(H � u)�(H � v)� �(H)�(H � u� v)]:
(5)

Corollary 1.1.

'(G �A)'(G�B)� '(G)'(G �A�B) = ['(A0)'(B0)]�1 [
P

i '(G� Pi)]
2
.

Corollary 1.2.

�(G �A)�(G �B)� �(G)�(G � A�B) = [�(A0)�(B0)]�1
P

i[�(G� P )]2.

Corollary 1.3.

�(G�A)�(G�B)� �(G)�(G�A�B) =
P

i �(G�A�Pi)�(G�B �Pi).

The summations in Corollaries 1.1 { 1.3 go over all paths Pi of the graph G,
connecting the vertices u and v.

Theorem 2. Let H be a graph and u and v two distinct vertices of H. If u
and v are connected by a unique path P, then

�(H � u)�(H � v)� �(H)�(H � u� v) = [�(H � P )]2: (6)

Corollary 2.1. If the vertices u and v of the graph G (from Theorem 1)
are connected by a unique path P, then

�(G�A)�(G �B)� �(G)�(G �A�B) = �(G�A� P )�(G �B � P ):

Proof. In order to prove Theorem 1 we need an auxiliary result.

Lemma 5. Let R1; R2; . . . ; Rm be routed graphs and u1; u2; . . . ; um, the
corresponding roots. Construct the graph R by identifying the roots of all Ri,
i = 1; 2; . . . ;m. The vertex so obtained will be denoted by u. Then

�(R) = �(R1)�(R
0
2) . . .�(R

0
m) + �(R0

1)�(R2) . . .�(R
0
m)+

+(R0
1)�(R

0
2) . . .�(Rm)� (m� 1)x�(R0

1)�(R
0
2) . . .�(R

0
m)

(7)

where R0
i = Ri � ui, i = 1; 2; . . . ;m.

Proof. Since the vertex u is a cutpoint in R, it cannot happen that a circuit
of R lies partially in Ri and partially Rj , i 6= j. Then applying Lemma 2 we get

�(R) = x�(R � u)�

mX
i=1

X
ji

�(R � u� vji)� 2

mX
i=1

X
ki

tki�(R� Zki) (8)

where vji denotes a vertex of Ri which is adjacent to ui and Zki denotes a circuit
of Ri which contains the vertex ui; the appropriate summations go over all vertices
vji and all circuits Zki , respectively.
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From the construction of the graph R it is evident that

R� u = R0
1 uR0

2 u � � �uR0
m

R� u� vji = R0
1 u � � �uR0

i � vji u � � �uR0
m

R� zki = R0
1 u R0

2 u � � �uR0
m

R� u� vji = R0
1 u � � �uRi � zki u � � �uR0

m

and bearing in mind Lemma 1 we transform (8) into

�(R) =

x

mY
h=i

�(Rh0)�

mX
i=1

Y
h 6=i

�(Rh0)

2
4X

ji

�(Ri � ui � vji ) + 2
X
ki

tki�(Ri � Zki)

3
5 (9)

On the other hand, application of Lemma 2 to Ri gives

�(Ri) = x�(Ri � ui)�
X
ji

�(Ri � ui � vji)� 2
X
ki

tki�(Ri � Zki)

which combined with (9) gives

�(R) = x

mY
h=1

(Rh0) +

mX
i=1

Y
h6=i

�(Rh0)[�(Ri)� x�(R0
i)]:

Formula (7) follows now immediately. �

Proof of Theorem 1. Lemma 5 can, of course, be used for all graphs possessing
cutpoints. Since the vertices u and v of the graph G are cutpoints (see Fig. 1) we
may apply formula (7) to G and its subgraphs G�A and G�B.

Fig. 2

De�ning the graph G1 as obtained by identifying the roots of B and Y with
the vertex v of H (see Fig. 2), we arrive at the following special case of (7):

�(C) = �(A)�(X 0)�(G1 � u) + �(A0)�(X)�(G1 � u) + �(A0)�(X 0)�(G1)�

�2x�(A0)�(X 0)�(G1 � u):
(10)
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Let the graph G2 be obtained, in analogy to G1, by identifying the roots of A
and X with the vertex u of H (see Fig. 2). Then we immediately conclude that
G�A = X 0u(G1�u), G�B = Y 0+(G2�v) and G�A�B = X 0uY 0u(H�u�v)
and therefore

�(G�A) = �(X 0)�(G1 � u); �(G�B) = �(Y 0)�(G2 � v)

�(G�A�B) = �(X 0)�(Y 0)mu(H � u� v):

On the other hand, by Lemma 5,

�(G1) = �(B)�(Y 0)�(H � v) + �(B0)�(Y )�(H � v) + �(B0)�(Y 0)�(H)�

�2x�(B0)�(Y 0)�(H � v) (11)

�(G1 � u) = �(B)�(Y 0)�(H � u� v) + �(B0)�(Y )�(H � u� v)+

�(B0)�(Y 0)�(H � u)� 2x�(B0)�(Y 0)�(H � u� v) (12)

�(G2 � v) = �(A)�(X 0)�(H � u� v) + �(A0)�(X)�(H � u� v)+

�(A0)�(X 0)�(H � v)� 2x�(A0)�(X 0)�(H � u� v): (13)

Substituting eqs. (10){(13) into the 1. h. s. of formula (5) we obtain its r. h. s. after
a lengthy calculation. �

Corollary 1.1 follows for t1 = t2 = � � � = tr = 1, by taking into account eq. (3)
and the fact that G�Pi = A0uBuXuY u(H�Pi). Corollary 1.2 is obtained in a
similar manner for t1 = t2 = � � � = tr = 0 using eq. (4). Corollary 1.3 is based on the
fact that because of (G�A�Pi)u(G�B�Pi) = A0uB0uX 0uY 0u(H�Pi)u(H�Pi),
we have

�(A0)�(B0)�(X 0)�(Y 0)�(H � Pi)
2 = �(G �A� Pi)�(G�B � Pi): (14)

Proof of Theorem 2 will be performed by induction on the length p of the
path P .

LetH0; H1; . . . ; Hp be rooted graphs whose roots are denoted by v0; v1; . . . ; vp,
respectively. Then the graph H (from Theorem 2) can be constructed by joining
the vertices vi�1 and vi by a new edge ei, i = 1; . . . ; p (see Fig. 3). In this notation,
v0 � u and vp � v.

One should observe that the edges ei cannot belong to circuits, and thus
Lemma 3 is applicable to them.
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For p = 0, eq. (6) is ful�lled in a trivial maner since then u � v and, by
de�nition, �(H � u� v) � 0.

For p = 1, Lemma 3 gives �(H) = �(H0)�(H1) � �(H0 � u)�(H1 � v) and
since

�(H � u) = �(H0 � u)�(H1); �(H � v) = �(H0)�(H1 � v);

�(H � u� v) = �(H � P )�(H0 � u)�(H1 � v)

one immediately veri�es that (6) holds.

Suppose now that p > 1 and that (6) holds for the graphH 0 and its vertices v1
and vp�1 (see Fig. 4). For convenience we shall write v1 = u0, vp�1 = v0. Applying
Lemma 3 to the edges e1 and ep of H and using Lemma 1, we arrive at

�(H) = �(H0)�(Hp)�(H
0)� �(H0 � v0)�(Hp)�(H

0 � u0)�

��(H0)�(Hp � vp)�(H
0 � v0) + �(H0 � v0)�(Hp � vp)�(H

0 � u0v0):

In addition to this,

�(H � u) = �(H0 � v0)[�(Hp)�(H
0)� �(Hp � vp)�(H

0 � v0)];

�(H � v) = �(Hp � vp)[�(H0)�(H
0)� �(H0 � v0)�(H

0 � u0)];

�(H � u� v) = (H0 � v0)�(Hp � vp)�(H
0):

Substituting all these relations into the l. h. s. of eq. (6) one obtains

�(H � u)�(H � v)� �(H)�(H � u� v) =

�(H0 � v0)
2�(Hp � vp)

2[�(H 0 � u0)�(H 0 � v0)� �(H 0)�(H 0 � u0 � v0)]:

According to the induction hypothesis,

�(H 0 � u0)�(H 0 � v0)� �(H 0)�(H 0 � u0 � v0)� [�(H 0 � P `)]2

where P 0 is the (unique) path connecting v1 and vp�1 in H 0. Bearing in mind that
H 0 � P 0 = (H1 � v1)u (H2 � v2)u � � �u (Hp�1 � vp�1) we conclude that

�(H � u)�(H � v)� �(H)�(H � u� v) =

= [�(H0 � v0)�(H1 � v1)�(H2 � v2) . . .�(Hp � vp)]
2

which is equivalent to eq. (6). This proves Theorem 2. �

Corollary 2.1 is obtained by combining Theorems 1 and 2 and by taking into
account a formula analogous to (14) which holds for the �-polynomial.

Discussion. It see that Theorems 1 and 2 are special cases of a more general
result, which, however remains still to be discovered. We conjecture the following
relation for the matching polynomial.

Let G be a graph and A and B its two subgraphs, such that A and B have
disjoint vertex sets. Let P1; P2; . . . ; Ps be the paths in G whose one endpoint
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belongs to A, the other endpoint to B, and no other vertex belongs to either A or
B. then

�(G �A)�(G �B)� �(G)�(G �A�B) =
X
i

�(G�A� Pi)�(G �B � Pi)�

�
X
i<j

�(G�Ai � Pi � Pj)�(G �B � Pi � Pj) + � � �+ (15)

+(�1)s�1�(G �A� P1 � P2 � � � � � Ps)�(G �B � P1 � P2 � � � � � Ps)

where the convention is that whenever at least two among the paths Pi1 ; Pi2 ; . . . ; Pik
have at least one common vertex, then �(G� A� Pi1 � Pi2 � � � � � Pik ) � �(G �

B � Pi1 � Pi2 � � � � � Pik ) � 0.

If both A and B are one-vertex graphs, then (15) reduces to (4). Another
special case of eq. (15), namely when only B is a one-vertex graph, reads

�(G �A)�(G � v)� �(G)�(G �A� v) =
X
i

�(G �A� Pi)�(G � v � Pi)

and has been established previously [6]. Corollary 1.3 is a third special case of the
formula (15).
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