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A NOTE ON THE INDEPENDENCE NUMBER OF

AN IDENTICALLY SELF-DUAL PERFECT MATROID DESIGN

D�anut Marcu

Abstract. Let E be a �nite set andM(E; r) an identically self-dual perfect matroid design
on E, with hyperplane cardinality c(M), and r as a rank function. If M is not the r(E)-uniform
matroid, we show that its independence number equals c(M)� 1.

Introduction. Our matroid-theoretic terminology is based essentially on
the books of Randow [1] and Welsh [2]. Throughout, E will denote an n-set, jSj
denotes the cardinality of the set S, and M :=M(E; r) a matroid on E with r as
a rank function. A subset s � E is called independent if r(S) = jSj, a basis of M
being a maximal independent subset of E. A subset S � E is called dependent if
r(S) < jSj, a circuit of M being a minimal dependent subset of E. It is well-known
that a subset is independent i� does not contain a circuit. If fBig is the set of
bases of M , then fE � Big is the set of bases of the dual-matroid M� on E. If r�

denotes the rank function of M�, then the following holds:

(1) r(E) + r�(E) = jEj:

A cocircuit of M is a circuit of M�, and a hyperplane of M is a complement of a
cocircuit in E. A matroid M on E is identically self-dual if M = M�, i.e., every
circuit is a cocircuit and vice versa.

The span (closure) S of a subset S E is de�ned by

S = fe 2 E : r(S [ feg) = r(S)g;

and S is called a closed set or at, if S = S. An m-at is de�ned as a closed subset
of E having rank m.

A perfect matroid design is a matroid in which each m-at has a common
cardinal, 1 � m � r(E); in particular, all of its hyperplanes have the same cardi-
nality, which we denote by c(M). If k(M) is the minimum cardinality of a circuit
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of the matroid M , it follows that k(M) � 1 is the maximum integer t such that
every t-subset of E is independent; k(M)� 1 is called the independence number of
M and will be denoted by i(M).

The main result. Let M be a matroid on E and M� its dual matroid. The
family of independent sets of M� is

(2) fS � E : r(E � S) = r(E)g

The k-uniform matroid on E is de�ned by taking the family of bases to be fS �
E : jSj = kg.

Let t be an integer greater than 1. A t � (v; k; �) design (V; �) is a v-set V
and a system � of k-subsets of V (k < v), called blocks, such that every t-subset
of V is contained in exactly � blocks (repeated blocks are admissible in the system
�). For example, 1� (4; 2; 1), 3� (8; 4; 1) and 5� (12; 6; 1) are identically self dual
perfect matroid designs. Moreover, no one of these is an r(E)-uniform matroid.
Thus, the following theorem seems to be of interest.

Theorem. Let M be an identically self dual perfect matroid design. If M is
not the r(E)-uniform matroid, then i(M) = c(M)� 1.

Proof. From [2, Theorem 6, p. 212] we have

(3) c(M) � n=2:

Since M is identically self-dual, then, by (1), we obtain

(4) r(E) = n=2:

On the other hand, for each hyperplane H of M , the following holds:

(5) r(E) � 1 = r(H) � jH j = c(M):

Hence, from (3) { (5), it follows that

(6) n=2� 1 � c(M) � n=2:

Suppose that c(M) = n=2�1. Thus, by (4) and (5), it follows that every hyperplane
is an independent set, i.e., by (2), for each hyperplane H we have

(7) r(E �H) = r(E):

Now, let S � E be such that jSj = r(E). If S is not an independent set, then S
contains a circuit, i.e., since M is identically self dual, there exists a hyperplane H
such that

(8) E �H � S:

From (7) and (8), since r(S) � r(E), we obtain r(E) � r(s) � r(E), i.e., r(S) = jSj.
Thus, S is an independent set. Moreover, because jSj = r(E), it follows that S is a
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basis of M . Consequently, every subset of cardinality r(E) is a basis of M , i.e., M
is the r(E)-uniform matroid, contrary to the hypothesis. Hence, in (6), we must
have

(9) c(M) = n=2:

Let C be an arbitrary circuit ofM (C is at the same time a cocircuit ofM). By (9),
we have jCj = jEj� c(M) = c(M), i.e., all the circuits of M have cardinality c(M),
and therefore, every [c(M)�1]-subset ofM is independent. Thus, i(M) = c(M)�1.

Corollary 1. Let S be a subset of E. If S is a hyperline of M (M being like
as in the Theorem), and S is not independent, then S is closed.

Proof. Suppose that S 6= S. Since S � S, it follows that jSj < jSj�c(M), i.e.,
jSj � c(M) � 1 = i(M). Thus (because every set contained in an independent set
is independent) S is independent, contradicting the hypothesis, and the corollary
is proved.

Corollary 2. If S a subset of E such that 0 � r(S) � c(M) � 2, then S is
independent in M (M taken as in Theorem).

Proof. Suppose that S is not independent, i.e., that there exists a circuit C
such that C � S. Thus, c(M)� 1 = r(C) � c(M)� 2, which is absurd. Hence the
corollary is proved.
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