UNIONS AND INTERSECTIONS OF ISOMORYHIC IMAGES OF NONSTANDARD MODELS OF ARITHMETIC

Aleksandar Ignjatović

Abstract. We consider those initial segments of a nonstandard model \mathfrak{M} of Peano arithmetic (abbreviated by P) which can be obtained as unions or intersections of initial segments of \mathfrak{M} isomorphic to \mathfrak{M} . For any consistent theory $T \supseteq P$ we find models of T having collections of initial segments densely ordered by inclusion so that for any segment I from such collection and any $k \in \omega$ the family $\mathcal{A}_k^{\mathfrak{M}} = {\mathfrak{N} | \mathfrak{N} \subseteq_e \mathfrak{M} \mathfrak{N} \prec_{\Sigma_k} \mathfrak{M}, \mathfrak{N} \cong \mathfrak{M}}$ can be particulation two disjoint parts \mathcal{A}_1 , and \mathcal{A}_2 satisfying $I = \bigcup \mathcal{A}_1 = \bigcap \mathcal{A}_2$ i.e. I is a "point of accumulation" for all families $\mathcal{A}_k^{\mathfrak{M}}$. We investigate, the order type of such collections of segments in the case of recursively saturated models of P.

We denote nonstandard. models of P by \mathfrak{M} , \mathfrak{N} and \mathfrak{K} and their domains by $|\mathfrak{M}|$, $|\mathfrak{N}|$ and $|\mathfrak{K}|$, respectively; L_p denotes the language of P, \mathcal{N} denotes the structure of natural numbers and ω stands for its domain. If \mathfrak{M} is a model of Pand \mathfrak{N} a structure for L_p such that $\mathfrak{N} \subseteq \mathfrak{M}$, then by $\overline{\mathfrak{N}}$ we denote the smallest initial segment of \mathfrak{M} containing \mathfrak{N} ; $\mathfrak{N} \subseteq_e \mathfrak{M}$ ($\mathfrak{N} \prec_e \mathfrak{M}$) means that \mathfrak{M} is an end extension (elementary end extension) of \mathfrak{N} , while $\mathfrak{N} \prec_{\Sigma_k} \mathfrak{M}$ means that for all Σ_k formulas φ and all $a_1, \ldots, a_n \in |\mathfrak{M}|$, $\mathfrak{N} \models \varphi[a_1, \ldots, a_n]$ holds iff $\mathfrak{M} \models \varphi[a_1, \ldots, a_n]$ holds. For any $\mathfrak{M} \models P$ and $a \in \mathfrak{M}$, let $I_a = \{b \in |\mathfrak{M}| \mid b < a\}$. We use the consequence of Matijasevič's theorem asserting that for any models \mathfrak{M} , \mathfrak{N} of P, $\mathfrak{M} \subseteq \mathfrak{N}$ implies $\mathfrak{M} \prec_{\Sigma_0} \mathfrak{N}$. Thus, $\mathcal{A}_0^{\mathfrak{M}} = \{\mathfrak{N} \mid \mathfrak{N} \subseteq_e \mathfrak{M}, \mathfrak{N} \cong \mathfrak{M}\}$. If Γ is a set of sentences of L_p then $\operatorname{Th}_{\Gamma}(\mathfrak{M})$ denotes the set of all sentences from Γ , which are true in \mathfrak{M} . We use te fact that for any models \mathfrak{M} , \mathfrak{N} of P, $\mathfrak{N} \subset_e \mathfrak{M}$ implies $\operatorname{SSy}(\mathfrak{M}) = \operatorname{SSy}(\mathfrak{N})$. The following hierachical refinement of Gaifman's Splitting Theorem is Theorem 1.2 from [3].

PROPOSITION 0.1. Let \mathfrak{M} and \mathfrak{N} be models of P and $\mathfrak{N} \prec_{\Sigma_k} \mathfrak{M}$. Then $\mathfrak{N} \prec_e \overline{\mathfrak{N}} \subseteq_e \mathfrak{M}$ and $\overline{\mathfrak{N}} \prec_{\Sigma_k} \mathfrak{M}$.

This paper is a revised part of author's master thesis. I would like to express my gratitude to Žarko Mijajlović, my advisor, for many helpful discussions on this subject.

AMS Subject Classification (1980): Primary 03H15

The following proposition is a hierarchical generalization of Theorem 2.4 (ii) from [5], and can be proved in the same way.

PROPOSITION 0.2. The following are equivalent: (i) for arbitrary $a \in |\mathfrak{N}|$, \mathfrak{M} is isomorphic to an initial segment of $\mathfrak{N} \Sigma_k$ -elementarily embedded in \mathfrak{N} , which contains a. (ii) $\operatorname{Th}_{\Pi_{k+2}}\mathfrak{M} \subseteq \operatorname{Th}_{\Pi_{k+2}}(\mathfrak{N})$ and $\operatorname{SSy}(\mathfrak{M}) = \operatorname{SSy}(\mathfrak{N})$.

Let us consider those initial segments of a model \mathfrak{M} of P which can be obtained as unions or intersections of initial segments of \mathfrak{M} isomorphic to \mathfrak{M} . As it was shown in [3], (see also [1]) $\bigcap \mathcal{A}_k^{\mathfrak{M}}$ is the smallest initial segment of \mathfrak{M} containing all Σ_{k+1} -definable points of \mathfrak{M} on the other hand $\bigcup \mathcal{A}_k^{\mathfrak{M}} = \mathfrak{M}$.

LEMMA 1.1. Let I_1 and I_2 be initial segments of a nonstandard model \mathfrak{M} of P such that $\omega \subset I_2 \subset I_1$. Then I_1 contains a model \mathfrak{N} of P such that $\mathfrak{N} \subset_e \mathfrak{M}$, $\mathfrak{N} \prec_{\Sigma_k} \mathfrak{M}, \mathfrak{N} \cong \mathfrak{M}, \mathfrak{N} \not\subseteq I_2$ iff it contains a model $\mathfrak{K} \models P$ such that $\mathfrak{K} \prec_{\Sigma_k} \mathfrak{M}$, $\operatorname{Th}_{\Pi_{k+2}}(\mathfrak{K}) \supseteq \operatorname{Th}_{\Pi_{k+2}}(\mathfrak{M})$ and $\mathfrak{K} \not\subseteq I_2$.

Proof: Suppose that there is a model \mathfrak{K} satisfying the conditions from Lemma 1.1, and let $a \in |\mathfrak{K}| \setminus I_2$. Proposition 0.1 implies $\mathfrak{K} \prec \overline{\mathfrak{K}} \prec_{\Sigma_k} \mathfrak{M}$ and $\overline{\mathfrak{K}} \subset_e \mathfrak{M}$; thus $\operatorname{Th}_{\Pi_{k+2}}(\overline{\mathfrak{K}}) \supseteq \operatorname{Th}_{\Pi_{k+2}}(\mathfrak{M})$ and $\operatorname{SSy}(\overline{\mathfrak{K}}) = \operatorname{SSy}(\mathfrak{M})$ holds. According to Proposition 0.2, model \mathfrak{M} is isomorphic to a submodel \mathfrak{N} of $\overline{\mathfrak{K}}$ such that $\mathfrak{N} \subseteq_e \overline{\mathfrak{K}}, \mathfrak{N} \prec_{\Sigma_k} \overline{\mathfrak{K}}$ and $a \in |\mathfrak{N}|$. Since $\mathfrak{N} <_{\Sigma_k} \overline{\mathfrak{K}} <_{\Sigma_k} \mathfrak{M}$ and $a \in \mathfrak{N} \setminus I_2$ imply $\mathfrak{N} \prec_{\Sigma_k} \mathfrak{M}$ and $\mathfrak{N} \not\subseteq I_2$, we conclude that \mathfrak{N} satisfies the conditions from Lemma 1.1. The converse is obvious.

COROLLARY 1.2. Let I be an initial segment of a nonstandard model \mathfrak{M} of P and $I \neq \omega$ Then:

(i) There is a subfamily $\mathcal{A} \subseteq \mathcal{A}_k^{\mathfrak{M}}$ such that $I = \bigcup \mathcal{A}$ iff for all $a \in I$ there is a model $\mathfrak{K}_a \models P$ such that $a \in \mathfrak{K}_a$, $\mathfrak{K}_a \prec_{\Sigma_k} \mathfrak{M}$ and $\operatorname{Th}_{\Pi_{k+2}}(\mathfrak{K}_a) \supseteq \operatorname{Th}_{\Pi_{k+2}}(\mathfrak{M})$. 5 (ii) There is a subfamily, $\mathcal{A} \subseteq \mathcal{A}_k^{\mathfrak{M}}$ such that $I = \bigcap \mathcal{A}$, iff $I \cong \mathfrak{M}$ or for all $a \in |\mathfrak{M}| \setminus I$ there is a model $\mathfrak{K}_a \subseteq I_a$ such that $\mathfrak{K}_a \subseteq I$, $\mathfrak{K}_a \models P$, $\mathfrak{K}_a \prec_{\Sigma_k} \mathfrak{M}$ and $\operatorname{Th}_{\Pi_{k+2}}(\mathfrak{K}_a) \supseteq \operatorname{Th}_{\Pi_{k+2}}(\mathfrak{M})$.

Proof. (i) We apply Proposition 2.1. to all pairs $I, I_a, a \in I$.

(ii) $I \cong \mathfrak{M}$, let $\mathcal{A} = \{I\}$; otherwise, we apply Proposition 2.1 to all pairs I_a , I where $a \in |\mathfrak{M}| \setminus I$.

The following lemma, which is useful for applications of Corollary 1.2, can be proved easily.

LEMMA 1.3. Let \mathfrak{M} and \mathfrak{N} be arbitrary models for the same language. Then $\mathfrak{N} \prec_{\Sigma_k} \mathfrak{M}$ implies $\operatorname{Th}_{\Pi_{k+2}}(\mathfrak{M}) \subseteq \operatorname{Th}_{\Pi_{k+2}}(\mathfrak{N})$.

COROLLARY. 1.4. Let \mathfrak{M} and \mathfrak{N} be nonstandard models of P and $\mathfrak{N} \prec_{\Sigma_{k+1}} \mathfrak{M}$; then there is a subfamily $\mathcal{A} \subseteq \mathcal{A}_k^{\mathfrak{M}}$ such that $\overline{\mathfrak{N}} = \bigcup \mathcal{A}$.

Proof. Immediately from Proposition 0.1, Corollary 1.2 (i) and Lemma 1.3. As a consequence, we get the following proposition.

PROPOSITION 1.5. Let I be an initial segment of a nonstandard model \mathfrak{M} of P and \mathcal{B} a family of initial segments of \mathfrak{M} such that for any \mathfrak{N} from $\mathcal{B}, \mathfrak{N} \models P$ and $\mathfrak{N} \prec_{\Sigma_{k+1}} \mathfrak{M}$ holds. Then:

(i) If I = ∪ B, then there is a subfamily A ⊆ A^M_k such that I = ∪ A;
(ii) If I = ∩ B and I ∉ B, then there is a family A ⊆ A_k such that I = ∩ A^M_k.

PROPOSITION 1.6. Let \mathfrak{M} and \mathfrak{N} be nonstandard models of P, such that $\mathfrak{N} \subseteq_e \mathfrak{M}$ and let $\mathfrak{N}_1, \mathfrak{N}_2, \ldots$, be a strictly decreasing Σ_{k+1} -elementary chain of initial segments, i.e. $\mathfrak{N}_i \subseteq_e \mathfrak{M}, \mathfrak{N}_1 \succ_{\Sigma_{k+1}} \mathfrak{N}_2 \succ_{\Sigma_{k+1}} \mathfrak{N}_3 \succ_{\Sigma_{k+1}} \ldots$, such that $\bigcap_{i \in \omega} \mathfrak{N}_i = \mathfrak{N}$. Then, the family $\mathcal{A}_k^{\mathfrak{M}}$ can be divided into two disjoint subfamilies \mathcal{A}_k^1 and \mathcal{A}_k^2 such that $\mathfrak{N} = \bigcup \mathcal{A}_k^1 = \bigcap \mathcal{A}_k^2$.

Proof. Since P has definable Skolem functions, the hierachical refinement of the Tarski-Vaught Theorem implies $\bigcap_{i \in \omega} \mathfrak{N}_i = \mathfrak{N} \prec_{\Sigma_{k+1}} \mathfrak{M}$. Thus, letting $\mathcal{A}_k^1 = \{\mathfrak{K} | \mathfrak{K} \in \mathcal{A}_k^{\mathfrak{M}}, \mathfrak{K} \subseteq \mathfrak{N}\}$ and $\mathcal{A}_k^2 = \{\mathfrak{K} | \mathfrak{K} \in \mathcal{A}_k^{\mathfrak{M}}, \mathfrak{K} \supset \mathfrak{N}\}$, we get from Corollary 1.4 and Proposition 1.5 $\mathfrak{N} = \bigcup \mathcal{A}_k^1 = \bigcap \mathcal{A}_k^2$.

COROLLARY 1.7. Let \mathfrak{M} be a nonstandard model of P and $\mathfrak{N}_1 \prec \mathfrak{N}_2 \prec \mathfrak{N}_3 \ldots$ a strictly decreasing elementary chain of initial segments of \mathfrak{M} , such that $\bigcap_{i \in \omega} \mathfrak{N}_i \neq \mathcal{N}$. Then for all $n \in \omega$ the family $\mathcal{A}_k^{\mathfrak{M}}$ can be divided into two disjoint subfamilies \mathcal{A}_k^1 , \mathcal{A}_k^2 such that $\bigcup \mathcal{A}_k = \bigcap \mathcal{A}_k^2 = \bigcap_{i \in \omega} \mathfrak{N}_i$

Proof: Since P has definable Skolem functions, $\bigcap_{i \in \omega} \mathfrak{N}_i \prec \mathfrak{M}$ holds, and consequently, $\bigcap_{i \in \omega} \mathfrak{N}_i \models P$. Since $\bigcap_{i \in \omega} \mathfrak{N}_i \neq \mathcal{N}$, we can apply Proposition 1.6.

We now look for models having such chains.

LEMMA 1.8. For any consistent extension T of P there is a countable model \mathfrak{M} of T having a family of initial segments densely ordered by inclusion such that any member of this family is an intersection of a strictly decreasing elementary chain of initial segments of \mathfrak{M} .

Proof. Let \ll be any recursive dense ordering on ω , and U(x, y, z), V(x, y)two new predicate symbols. We consider the theory $T' = T \cup A_1 \cup A_2 \cup A_3 \cup A_4$ of the laguage $L = L_p \cup \{U, V\}$, where $A_1 - A_4$ are defined as follows: $A_1 = \{\forall x \forall y (V(x, n) \land y < x \rightarrow V(y, n)); n \in \omega$, and the same for $U(x, m, n)\};$ $A_2 = \{\forall x_1 \dots x_k (V(x_1, n) \land \dots \land V(x_k, n) \land \exists x \varphi(x, x_1, \dots, x_k) \rightarrow \exists x (V(x, n) \land \varphi(x, x_1, \dots, x_n))) \text{ for all } k, n \in \omega, \text{ all formulas } \varphi \text{ of } L_p, \text{ and the same for} U(x, m, n), m, n \in \omega\};$ $A_3 = \{\forall x ((V(x, n) \rightarrow U(x, n, m)) \land (U(x, n, m+1) \rightarrow U(x, n, m))) \land \exists x (U(x, n, m) \land \neg U(x(x, n, m+1)), n, m \in \omega\};$

 $A_4 = \{ \forall x (U(x, n, 1) \to V(x, m)); \text{ for all } m, n \in \omega \text{ such that } n \gg m \}.$

Theory T' is consistent because any finite subtheory of T' is realized in a model \mathfrak{M}' obtained as a finite chain of elementary end extensions of any model \mathfrak{M} of T. Any countable model of T', with the family of initial segments which are interpretations in this model of U(x, n, m) and $\bigcap \mathfrak{M} \in_{\omega} U(x, n, m), n, m \in \omega$, obviously satisfies the conditions from Lemma 1.8.

Ignjatović

Since T' is a recursive theory, the same argument shows that any resplendent countable model of T can be expanded to a model of T' because T' is consistent with Th (\mathfrak{M}) for any $\mathfrak{M}, \mathfrak{M} \models T$.

From Lemma 1.8 and Corollary 1.7 the following proposition immediately follows.

PROPOSITION 1.9. For any consistent extension T of P there is a countable model \mathfrak{M} of T having a collection of initial segments densely ordered by inclusion, so that, for any segment I from the collection and any $k \in \omega$ the family $\mathcal{A}_k^{\mathfrak{M}}$ can he divided into two disjoint parts \mathcal{A}_k^2 and \mathcal{A}_k^2 so that $I = \bigcup \mathcal{A}_k^1 = \bigcap \mathcal{A}_k^2$.

Using a Kotlarski's result [2] we can prove that in the case of recursively saturated countable models of P, we can find such a collection of initial segments of the power 2^{ω} . Namely, in that case, the set $Y = \{\mathfrak{N} | \mathfrak{N} \prec_e \mathfrak{M}\}$ is of the order type of Cantor set 2^{ω} with its lexicographical ordering, and any \mathfrak{N} from Y is isomorphic to \mathfrak{M} . We call a pair (Y_1, Y_2) a cut in Y iff $Y_1 \cap Y_2 = \emptyset$, $Y_1 \cup Y_2 = Y$ and for all I_1, I_2 from Y, $I_1 \in Y_1$ and $I_2 \in Y_2$ implies $I_1 \subseteq I_2$. Since for two different cuts (I_1, I_2) and (I'_1, I'_2) the sets $\bigcap I_2 \setminus \bigcap I_1$ and $\bigcap I'_2 \setminus I'_1$ are disjoint and since \mathfrak{M} is countable, there are only countably many cuts (Y_1, Y_2) such that $\mathfrak{M} \setminus (\bigcap Y_2 \setminus \bigcup Y_1) \neq \emptyset$. It is easy to see that for any cut (Y_1, Y_2) such that $\mathfrak{M} \setminus (\bigcap Y_2 \setminus \bigcup Y_1) = \emptyset$, the segment $I = \bigcap Y_2 = \bigcup Y_1$ satisfies the conditions from Proposition 1.9, and that the family of such segments is of power 2^{ω} and is densely ordered by inclusion.

REFERENCES

- [1] A. Ignjatović, Initial segments and isomorphic images of nonstandard models of arithmetic, to appear.
- [2] H. Kotlarski, On elementary cuts in models of arithmetic, preprint.
- [3] Ž. Mijajlović, Submodels and definable points in models of Peano arithmetic, Notre Dame J. Formal Logic 24 (1983), 417-425.
- [4] J. Paris, Lecture notes on models of arithmetic, Manchestec, 1977.
- [5] C. Smorynski, Recursively saturated nonstandard models of arithmetic, JSL 46 (1981), 259–286.
- [6] C. Smorynski, Nonstandard models of arithmetic, preprint, University Utrecht, 1980.

Prirodno-matematički fakultet Univerziteta "Svetozar Marković" Kragujevac, Jugoslavija (Received 23 09 1985)