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CONDITIONAL PROBABILITY IN

NONSTANDARD ANALYSIS

Vesna Mu�sicki-Kova�cevi�c

Abstract. In this paper we apply the theory of Loeb measure to conditional probability
for hyper�nite Loeb spaces. We show that conditional probability �P (�=A) on a Loeb space
(V;M(�P );� P ) for A 2

� P(V ) (P (A) > 0 and P (A) �0 01 is a Loeb measure and for A 2

M(�P ) (�P (A) > 0) can be represented by a Loeb measure. For the case A 2M(�P ) we prove
that there exists a set C 2

� P(V ) such that �P (�=A) is equal to the Loeb conditional probability
L(P (�=C)). We introduce internal conditional probability relative to an internal subalgebra A
of �P(V ) as in case of �nite standard probability spaces. We show, analogously to a well-
known probability result, that internal conditional probability P (A=A), A 2

� P(V ), and internal
conditional expectation E(X=A), X is S-integrable, are P -a. s. unique, in nonstandard sense,
random variables on (V;A; P ). Finally, we give a nonstandard characterization of conditional
probability �P (A=M(A)), A 2M(�P ) on a Loeb space (V;M(�P );� P ). We prove that there
exists a set C 2

� P(V ) such that P (C=A) is the lifting of �P (A=M(A)).

Introduction. In this paper we concern ourselves with conditional proba-
bility for hyper�nite Loeb spaces. We use the well-known results from the theory
of Loeb measure [8] and nonstandard probability [2], [10] and the methodology
developed by P. Loeb, J. Keisler, R. Anderson and others.

In the �rst part we de�ne internal conditional probability P (�=A), A 2 �P(V )
for a hyper�nite probability space (V; �P(V ); P ) and give the nonstandard rep-
resentation of conditional probability �P (�=A), A 2 M(�P ) on the Loeb space
(V;M(�P );�P ). We show that for A 2� P(V ) with P (A) > 0 and P (A) �0

0 �P (�=A) is a Loeb measure on (V;M(�P )) and for A 2M(�P ) with �P (A) > 0
there exists a set C 2� P(V ) such that �P (�=A) can be represented by the Loeb
conditional probability L(P (�=C)).

In the second part we de�ne, analogously to the de�nition of internal
conditional expectation E(X=A), [10], internal conditional probability P (A=A)
A 2 �P(V ), is an internal subalgebra of �P(V )) for a hyper�nite probability
space (V; �P(V ); P ). We show that so-introduced P (A=A) (E(X=A) as well) is
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P -a. s. unique random variable on (V;A; P ). The P -a. s. uniqness of the P (A=A)
(E(X=A)) is introduced in theorem 4, corresponding to the same concept from
standard probability. Finally, we give a nonstandard characterization of condition-
al probability P (A=M(A)) (A 2 M(�P ), (A 2M(�P ) M(A is a sub-�-algebra of
M(�P )) on a Loeb space (V;M(�P );�P ). We show that for A 2 M(�P ) there
exists a set B 2� P(V ) such that P (B=A) is lifting of �P (A=M(A)).

We assume (V;�P(V ); P ) to be a hyper�nite probability space and (V ,
M(�P );�P ) a Loeb space constructed from it, i.e. Loeb measure �P is de�ned
by

�P (F ) = inffst(P (A))jF � A and A 2� P(V )g

= supfst(P (A))jA � F and A 2� P(V )g
for F � V

and M(�P ) is a �-algebra of all �P -measurable sets F � V .

According to standard probability, for A 2� P(V ) with P (A) > 0 we de�ne
internal conditional probability P (�=A) of an internal event B relative to A by

P (B=A) = P (A \ B)=P (A)

It is easy to show that (V;�B(V ); P (�=A)) is a hyper�nite probability space, so it
gives rise to a Loeb space denoted by (V;M(L(P (�=A))); L(P (�=A))).

On the other hand, for a Loeb space (V;M(�P );�P ), conditional probability
�P (�=A) of an event B 2M(�P ) relative to A 2M(�P ), �P (A) > 0, is standardly
de�ned by

�P (B=A) = �P (A \ B)=�P (A)

It is well known that �P (�=A) is a probability measure on (V;M(�P )) but not
necessary a Loeb measure. However, for A 2� P(V ) with P (A) > 0 P (A) �0 0,
�P (�=A) is a Loeb measure and we shall show it in this paper.

Let �(�P (�=A)) be �-algebra of all �P (�=A)-measurable sets, i.e.

�(�P (�=A)) = fF � V jF \ A 2M(�P )g

It is obvious thatM(�P ) � �(�P (�=A)). From the theory of Loeb measure we know
that �P is a complete measure on (V;M(�P )) and thatM(�P ) is a completion of
�L(V ) relative to �P . We have the same for �P (�=A):

Lemma 1. Probability measure�P (�=A) is a complete measure on (V;M(�P ))
and M(�P ) is a completion of �L(V ) relative to �P (�=A) in the sense that for

F 2M(�P ) there exist sets Z 2 �L(V ) and N � V such that

F = Z [N; N � U; and �P (U=A) = 0:

Proof Let F 2M(�P ), �P (F=A) = 0 and M � F . Than is F \A 2M(�P ),
M \ A � F \ A and �P (F \ A) = 0. Since �P is a complete measure, M \ A 2
M(�P ) and �P (M \ A) =). This implies that M is �P (�=A) { measurable and
�P (M=A) = 0.
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Let F 2 M(�P ). Then there exist sets Z 2 �L(V ) and N � V such that
F = Z [ N , N � U and �P (U) = 0. Since U \ A � U and �P is a complete
measure, it follows that �P (U \ A) = 0, i.e. �P (U=A) = 0. Hence M(�P ) is a
completion of �L(V ) relative to �P (�=A).

The next theorem shows that conditional probability �P (�=A) for A 2� P(V ),
P (A) > 0, and P (A) �0 0 is a Loeb measure on (V;M(�P )).

Theorem 1. Let A 2� P(V ), P (A) >) and P (A) �0 0. Then (V;M(�P ),
�P (�=A)) is a Loeb probability space.

Proof. We show that �P (�=A) is a Loeb measure obtained from internal
conditional probability P (�=A). Using notations already de�ned we prove that

L(P (B=A)) = �P (B=A) for B 2M(�P ) (1)

Let F 2� P(V ). Since P (A) > 0 and P (A) �0 0

�P (F=A) = �P (F \ A)=�P (A) = st(P (F \ A))= st(P (A)) =

= st(P (F \ A)=P (A)) = L(P (F=A)):

Let F 2 �L(V ). The de�nition of Loeb measure

L(P (F=A)) =

=supfst(P (C=A))jC 2� P(V ); C � Fg = inffst(P (D=A))j (D 2� P(V ); D � Fg

implies that for " 2� R+ there exist sets C;D 2� P(V ) such that

�P (C=A) � �P (F=A)�P (D=A) and (2)
�P (D=A)� " < L(P (F=A)) < �P (C=A) + " (3)

Relations (2) and (3) imply

�P (F=A)� " < L(P (F=A)) < �P (F=A) + " i.e. L(P (F=A)) = �P (F=A)

Let F 2 M(�P ). Then, according to [8], there exist sets C;D 2 �L(V ) such that
C � F � D and �P (C) = �P (F ) =� P (D). We show that F 2 M(L(P (�=A)))
and that L(P (F=A)) = �P (F=A). Since

�P (DUA) = �P (D) + �P (A) � �P (D \ A) � �P (D) + �P (A)� �P (C \ A) =

= �P (C) + �P (A)� �P (C \ A) = �P (C [A) � �P (D [ A)

it follows that �P (D\A) = �P (C\A), whence, and from �P (C\A) � �P (F\A) �
�P (D \A) we get

�P (C=A) = �P (F=A) = �P (D=A) (4)

From (1) and (4) it follows that

L(P (C=A)) = L(P (D=A)) = �P (F=A) (5)
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and L(P (DC=A)) = 0. For the set F 2M(�P ) we have the following representa-
tion:

F = C [ (FC) where C 2 �L(V ); FC � DC and L(P (DC=A)) = 0:

So F 2 M(L(P (�=A))). Since C � F � D and C;D; F 2 M(L(P (�=A))) we
have that L(P (C=A)) � L(P (F=A)) � L(P (D=A)) which, in view of (5), implies

�P (F=A) � L(P (F=A)) � �P (F=A) i.e. L(P (F=A)) = �P (F=A)

Later on, whenever A 2� P(V ), P (A) > 0 and P (A) �0 0, the conditional
probability �P (�=A) on (V;M(�P )) will be denoted by L(P (�=A)); assuming that
it is a Loeb measure.

We now prove a representation theorem for conditional probability �P (�=A)
(A 2 M(�P ) and �P (A) > 0) on (V;M(�P )). We shall show that there exists a
set C 2� P(V ) with P (C) > 0 and P (C) �0 0 such that the conditional probability
�P (�=A) is equal to the Loeb conditional probability L(P (�=C)).

Theorem 2. Let A 2 M(�P ) with �P (A) > 0. Then, there exists a set

C 2� P(V ) with P (C) > 0 and P (C) �0 0 such that

L(P (F=C)) = �P (F=A); for any F 2M(�P )

Proof. According to [8] exists a set C 2� P(V ) such that �P (C4A) = 0. We
show that P (C) > 0 and P (C) �0 0: For sets A;C � V we have that C nA � C4A,
and A n C � C4A, so, by completeness of measure �P

�P (C nA) = �P (A n C) = 0

Since C = (C nA) [ (C \ A) and A = (A n C) [ (A \ C) and sets A;C satisfy (1)

�P (C) = �P (CnA)+�P (C\A) = �P (C\A) = �P (AnC)+(C\A) = �P (A) (2)

Hence P (C) > 0 and P (C) �0 0,

Let F 2M(�P ). Then

F \C = (F \A\C)[ ((C nA)\F ) and F \A = (F \A\C)[ ((A nC)\F ) (3)

From (3), (C n A) \ F � A4C, (A n C) \ F � A4C, �P ((C n A) \ F ) = 0
and �P ((A n C) \ F ) = 0 it follows that

�P ((A n C) = �P (F \ A \ C) + �P ((C nA) \ F ) = �P (F \ A \ C) =

= �P (F \ A \ C) + �P ((A n C) \ F ) = �P (F \ A)
(4)

Finally, according to theorem 1 (2) and (4) imply

L(P (F=C)) = �P (F=C) = �P (F \ C)=�P (C) = �P (F \ A)=�P (A) = �P (F=A)
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The following theorem is a simple consequence of the Loeb theorem [8], but
can be quite useful when working in nonstandard probability.

Theorem 3. Let A 2 M(�P ) with �P (A) > 0. Than, for any set F 2
M(�P ) there exists a set C 2� P(V ) such that �P (F=A) = �P (C=A).

Proof. For F 2M(�P ), by the Loeb theorem [8], there exists a set C 2� P(V )
such that �P (F4C) = 0. Since F \ A = (F \ A \ C) [ ((F n C) \ A) C \ A =
(F \ A \ C) [ ((C n F ) \A) (F nX) \ A � F4C and (C n F ) \ A � FtriangleC,
by the same arguments as in theorem 2, we get that �P (F \A) = �P (C \A), i.e.
�P (F=A) = �P (C=A).

In the second part of this paper we are dealing with internal conditional ex-
pectation E(X=A) of an internal random variable X : V !� R relative to A, where
A is an internal subalgebra of �P(V ) and P (A=A) denotes the internal conditional
probability of an event A 2� P(V ) elative to A.

We consider a hiper�nite probability space V;�P(V ); P ), A 2� P(V ) and
internal subalgebra of �P(V ). The hyper�nitness of A implies, by transfer principle,
that A is generated by a hyper�nite partition fV1; V2; . . .VHg (H 2� N nN) of the
set V . It permits us to de�ner P (A=A) in the same way as m the case of �nite
standard probability spaces:

P (A=A)(v) =

HX
i=1

P (A=Vi)IVi
(v) for v 2 V (1)

where P (A=Vi) = P (A \ Vi)=P (Vi) i = 1; 2; . . . ; H . Since

P (A=A)(v) =

HX
i=1

P (A=Vi)IVi
(v)

=
HX
i=1

(P (A \ Vi)=P (Vi))IVi
(v)

=

HX
i=1

((P (Vi)
�1
X

(P (u)IA(u); u 2 Vi))IVi
(v)

=

HX
i=1

E(IA=Vi)IVi
(v)

= E(IA=A)(v) i.e.

P (A=A) = E(IA=A): (2)

in the further work we shall use both (1) and (2) as de�nitions of internal conditional
probability.

For internal random variable X : V !� R on (V;�P(V ); P ) internal con-
ditional expectation E(X=A) has already been de�ned [6]. In [10] it is proved
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that E(X=A) is an S-A-integrable random variable on (V;A; P ) provided X is S-
integrable. This result applied to P (A=A) implies that P (A=A) is an S-A-integrable
random variable on (V;A; P ) since IA is S-integrable, [9]. In [10] it is proved that

E(E(X=A)) = E(X): (i)

Taking (2) as de�nition of P (A=A), from (i) it follows, [9], that

E(P (A=A)) = P (A) (ii)

Results (i) and (ii) make the Theorem of probability completeness for E(X=A) and
P (A=A) hold for hyper�nite probability spaces.

We now prove a nonstandard version of the well known probability theorem,
namely, that conditional probability and expectation relative to �-subalgebra �B are
�-a. s. unique random variables on (V; �B; �), [11].

Theorem 4. Let (V;�P(V ); P ) be a hyper�nite probability space, A �� P(V )
an internal subalgebra generated by a hyper�nite partition fV1; V2; . . . ; VHg (H 2�

NN) of V , X : V V !� R an S-integrable random variable on (V;�P(V ); P ) and

A 2� P(V ). Then

(i)
P
(X(v)P (v); v 2 U) =

P
(E(X=A)(v)P (v); v 2 U) for U 2 A

(ii) E(X=A) is the P -a. s. unique internal random variable on (V;A; P ) which
satis�es (i), i.e. for any other S-integrable Y : V !� R on (V;A; P ) satisfying (i)

Y (v) � E(X=A)(v) P -n. s.

and for any S-integrable H : V !� R on V;A; P ) with

X
(j(H(v) �E(X=A)(v)jP (v); v 2 V ) � 0 one hasX
(H(v)P (v); v 2 U) �

X
(E(X=A)(v)P (v); v 2 U) for U 2 A:

(iii) For any set B 2 A

P (A \B) =
X

(P (A=A)(v)P (v); v 2 B):

(iv) P (A=A) is the P-a. s. unique internal random variable on (V;A; P ) in

the sense given in (ii).

Proof (i) Since U =
SH
i=1(U \ Vi), for v 2 U \ ViE(X=A)(v) = E(X=U \ Vi)
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one has

X
(E(X=A)(v)P (v); v 2 U) =

HX
i=1

(E(X=A)(v)P (v); v 2
H[
i=1

(U \ Vi))

=

HX
i=1

(E(X=A)(v)P (v); v 2 U \ Vi))

=

HX
i=1

(E(X=U \ Vi)P (U \ Vi)

=

HX
i=1

((P (U \ Vi)
�1
X

(X(u)P (u); u 2 U \ Vi))P (U \ Vi)

=
X

(X(u)P (u); u 2
H[
i=1

(U \ Vi))

=
X

(X(u)P (u); u 2 U)

(ii) Let F (v) = E(X=A)(v). Then, in view of the Projection Theorem for
Integrabllity, [1], S-A-integrability of F : V !� R implies that �F : V ! R is
a �P -integrable random variable on (V;M(A);�P ). If Y : V ! �R is any S-A-
integrable random variable on (V;A; P ) which satis�es (i) then �Y : V ! R is a
�P -integrable random variable on (V;M(A);�P ) as well. Therefore, for U 2 A
Z
U

�Y d�P = st(
X

(Y (u)P (u); u 2 U)) = st(E(F (u)P (u); u 2 U)) =

Z
U

�Fd�P

Let M 2M(A). Then, by [8], there exists a set U 2 A such that �P (U4M) = 0.
Since U satis�es (1), we have

Z
M

�Y d�P =

Z
U

�Y d�P =

Z
U

�Fd�P =

Z
M

�Fd�P

and hence �Y (v) = �F (v) P -a. s.. This implies that

Pfv 2 V j jY (v)� F (v)j > n�1g � 0 for every n 2 N:

According to [4, Robinson's lemma about sequences] there exists h 2� NN such
that for every k 2� N , k � h

Pfv 2 V j jY (v) � F (v)j > k�1g � 0

Therefore, the set U = fv 2 V j jY (v)�F (v)j > h�g � 0 satis�es: U 2 A, P (U) � 0,
U � fv 2 V jY (v) 6= F (v)g and Y (v) � E(X=A)(v) for u 62 U . Hence

Y (v) � E(X=A)(v) P -a. s.



24 Vesna Mu�sicki-Kova�cevi�c

LetH : V !� R be an S-A-integrable random variable on (V;A; P ) with
P
(jH(v)�

F (v)jP (v); v 2 V ) � 0. Since �H , �F are �P -integrable random variables on
(V;M(A);�P ) andZ

V

j�H � �F jd�P = st(
X

(jH(v)� F (v)jP (v); v 2 V )) = 0

we have that �H(v) = �F (v) P -a. s.. Therefore, for U 2 A

X
(H(v)P (v); v 2 U) �

Z
U

�Hd�P =

Z
U

�Fd�P �
X

(F (v)P (v); v 2 U) i.e.

X
(H(v)P (v); v 2 U) �

X
(E(X=A)(v)P (v); v 2 U)

(iii) According to def (2) for P (A=A) and (i), for B 2 A we haveX
(P (A=A)(v)P (v); v 2 B) =

X
(E(IA=A)(v)P (v); v 2 B)

=
X

(IA(v)P (v); v 2 B) = P (A \B)

(iv) Let F (v) = P (A=A)(v). Then, since F is S-A-integrable, �F : V ! R
is a �P -integrable random variable on (V;M(A);�P ), so, for an S-A-integrable
random variable G : V ! �R on (V;A; P ) which satis�es (iii), we have that for
B 2 AZ
B

�Gd�P = st(
X

(G(v)P (v); v 2 B)) = st(
X

(F (v)P (v); v 2 B)) =

Z
B

�Fd�P

Hence, by the same arguments as in proof of (ii)

G(v) � F (v) = P (A=A)(v) P -n. s.

For H : V ! �R which is S-A-integrable and satis�es
P

(jH(v) � F (v)jP (v); v 2
V ) � 0, like in (ii), we have that �H(v) = �F (v) P -a. s. implies that for any B 2 A

st(
X

(H(v)P (v); v 2 B)) =

Z
B

�Hd�P =

Z
B

�Fd�P

= st(
X

(F (v)P (v); v 2 B)) = st(P (A \ B))X
(H(v)P (v); v 2 B) � P (A \B)i.e.

In [10] it is proved that for S-integrable random variable X : V ! �R
on (V; �P(V ); P ) the internal conditional expectation E(X=A) is a lifting of
�E(�X=M(A)), �E(�X=M(A)) being the conditional expectation of �X : V ! R
relative to sub-�-algebra M(A) � M(�P ). From this result we derive the fol-
lowing nonstandard characterization of the conditional probability �P (A=M(A)),
A 2M(�P ) on a Loeb space.
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Theorem 5. Let (V; �P(V ); P ) be a hyper�nite probability space, A an

internal subalgebra of �P(V ) and �P (A=M(A)) the conditional probability of

A 2 M(�P ) relative to sub-�-algebra M(A) � M(�P ). Then there exists a set

B 2 �P(V ) such that

st(P (B=A)) = �P (A=M(A)) P -a. s.

Proof. For A 2 M(�P ) there is a set B 2 �P(V ) such that �P (A4B) = 0.
The indicator function IB

IB(v) =

�
1; v 2 B

0; v 62 B

is an internal, S-integrable random variable on (V; �P(v); P ). Since

Pfvj IA(v)neqIB(v)g = P (A4B) = 0

IB is an S-integrable lifting of IA. In view of [10], this implies

�E(IB=A) =
�E(IA=M(A)) P -a. s. and so

st(P (B=A)) = �P (A=M(A)) P -a. s.
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