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THE ZERO-ONE LAW FOR PRODUCTS OF INTERNAL

�-FINITELY ADDITIVE PROBABILTTY SPACES

Bo�sko �Zivaljevi�c

Abstract. A version of the zero-one law for products of internal �-�nitely additive prob-
ability spaces is proved.

1. Introduction. H. J. Keisler proved (see [2], [3] or [4]) that Fubini's
theorem is valid for the product of two hyper�nite probability spaces. Namely, if
we have two hyper�nite probability spaces (X;A; �) and (Y;B; �) we may consider
the space (X � Y;A�B; �� �) (here A � B is the internal algebra of all inter-
nal subsets of X � Y on which � � � is naturally de�ned) and the Loeb space
(X � Y; L (A�B) ; L(�� �)) for which Fubini's theorem is valid. It is natural to
ask if the same theorem is true for the product of lawcountably many hyper�nite
probability spaces. In this paper we show that the zero-one law for products of
internal �-�nitely additive probability spaces is true.

The relevant facts about non standard measure theory that are needed in this
paper, can be found in [4] and we will only repeat some basic de�nitions. An inter-
nal �-�nitely additive probability space is a triple (X;A; �) where X is an internal
set, A an internal algebra of subsets of X and � a �-�nitely additive probability
measure on A. Given such a space we may construct (as it was pointed out by
P. Loeb) a standard countably additive probability space (X;L (A ) ; L(�)) where
L (A ) is a �-algebra containing A and � a �-additive complete measure extending
Æ Æ �, (where Æ is, as usual, a standard part map). The space (X;L (A ) ; L(�))
is call the Loeb space of a space (X;A; �). An example of an internal �-�nitely
additive probability space is a hyper�nite probability space, i.e. a triple (H;A; �)
where H is a hyper�nite set, A the internal algebra of all internal subsets of H and
� an internal �-�nitely additive probability measure on A.

In this paper we are working in a polysatured enlargement of a standard
structure.
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2. Results. From two internal �-�nitely additive probability spaces (X;A; �)
and (Y;B; �) we may construct the internal �-�nitaly additive probability space
(X � Y;A�B; �� �) where A�B is the least internal algebra containing the sets
of the form E�F (E 2 A; F 2 B), on which the measure ��� is naturally de�ned.
As mentioned in the introduction J. Keisler proved Fubini's theorem for the space
(X � Y; L (A�B) ; L(�� �)). This is a new result because if we consider the usual
standard product of the Loeb spaces (X;L (A )L(�)) and (Y; L (B) ; L(�)), denoted
by (X � Y; L (A ) �L (B) ; L(�)� L(�)), then we have L (A )�L (B) � L (A�B)
(and the measures L(�) � L(�) and L(� � �) coincide of L (A ) � L (B) and the
above inclusion can be strict as Hoover's example shows (see [4]).

We are now going to investigate a product of in�nitely many spaces.

Let (Xn;An; �n) (n 2 N) be a sequence of internal �-�nitely additive prob-
ability spaces (where N is, as usual, the set of standard natural numbers). We
may extend this sequence to an internal hyper�nite sequence of internal �-�nitely
additive probability spaces

(X1;A1; �1); . . . ; (XH ;AH ; �H) (H 2� N nN) (1)

At the same time we consider standard sequence of Loeb's spaces

(Xn; L (An) ; L(�n)) (n 2 N) (2)

In the internal product1
QH

1 Xk we can introduce an internal �-�nitely additive

measure
QH

1 �k, so that we have an internal �-�nitely additive probability space�QH

1 Xk;
QH

1 Ak ;
QH

1 �k

�
, where

QH

1 Ak is he least internal algebra containing all

sets of the form E1 � � � � � EH (Ek 2 Ak; k = 1; . . . ; H). The corresponding Loeb

space is
�QH

1 Xk; L
�QH

1 Ak
�
; L
�QH

1 �k

��
.

Considering the standard product of probability spaces (2) we obtain the
probability space (

Q
N Xk;

Q
N L (Ak) ;

Q
N L(�k)) where

Q
N L (Ak) is the �-

algebra containing all cylinder sets, i.e. sets of the form

P1 � � � � � Pn �Xn+1 � . . . (Pk 2 L (Ak) ; k = 1; . . . ; n)

and the complete probability measure
Q
N L(�k).

There exist a natural function ST :
QH

1 X ! Q
N Xk which assigns to every

�-�nite sequence (�1; . . . ; �H) 2
QH

1 Xk its projection on its �rst N coordinates
i.e.

ST (�1; . . . ; �H) = (�1; . . . ; �n; . . . ) (n 2 N)

From the following lemma we know that ST is onto, so that we can consider the
probability space (

Q
N Xk;A;m) where

A =

(
Y �

Y
k2N

Xk : ST
�1(Y ) 2 L

 
HY
k=1

Ak
!)

1If otherwise not stated
Q
H

1
and

Q
N
, will mean

HQ

k=1

and
Q

k2N

respectively.
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and m is the measure de�ned by: m(Y ) = L
�QH

1 �k

�
(ST�1(Y )).

Lemma 1. (i) ST is onto; (ii)
Q
N L (Ak) � A,

Q
N L(�k) and m agree onQ

N L (Ak).
Proof (i) Let (�1; . . . ; �n; . . . ) 2

Q
N Xk. We can extend this sequence to a

hyper�nite sequence (�1; . . . ; �H0
) such that �k 2 Xk for k = 1; . . . ; H0. In both

cases, H0 � H or H0 < H , we can cut o� the given sequence or extend it to the
sequence (�1; . . . ; �H) such that we have

ST (�1; . . . ; �H) = (�1; . . . ; �n; . . . ) (n 2 N):

(ii) Let P = fE1 � � � � �En �Xk+1� : Ek 2 Ak (k = 1; . . . ; n; n 2 N)g. First
we will prove that the �-algebra

Q
N L (Ak) can be obtained using the ordinary

Carath�eodory extention procedure for the measure
Q
N L(�k) on the semiring P .

If Fk 2 L (Ak) and L(�k) (Fk) = 0 (k = 1; . . . ; n; n 2 N), then we can pick
sets Ek 2 Ak (k = 1; . . . ; n) such that Ek � Fk and L(�k)(Ek) < n

p
" (or every

standard positive "), from which it follows that

F1 � � � � � Fk �Xn+1 � � � � � E1 � � � � �Ek �Xn+1 � . . .

and
Q
N L(�k)(E1 � � � � �En �Xr+1 � . . . ) < ". This shows that F1 � � � � � Fn �

Xn+1 � . . . is in Carath�eodory's extention P of the semiring P .
In the general case for Fk 2 L (Ak) (k = 1; . . . ; n) there exists sets Ek 2 Ak

(k = 1; . . . ; n) such that L(�k)(Ek�Fk) = 0 where � is the symmetric di�erence.
We have

(F1 � � � � � Fn �Xn+1 � . . . )�(E1 � � � � �En �Xn+1 � . . . ) �

�

0
B@F1�E1)�

Y
k2N
k>1

1
CA [

0
B@X1 � (F2�E2)�

Y
k2N
k>2

1
CA [ . . .

. . . [

0
B@n�1Y
k=1

Xk �

0
B@Fn�En � Y

k2N
k>2

Xk

1
CA
1
CA :

The sets on the right-hand side of the above inclusion have
Q
N L(�k) measure zero

and, because of the completeness of
Q
N L(�k), F1� � � ��Fn�Xn+1� . . . belongs

to P . We have proved Y
k2N

L (Ak) = P (3)

Now we can easily prove the second part of the lemma. For cylindric sets of the
form E1 � � � � �En �Xn+1� � � � = D (Ek 2 Ak; k = 1; . . . ; n) we have ST�1(D) =

E1 � � � � �En �Xn+1 � � � � �XH and L
�QH

1 �k

�
(ST�1(D)) =

Q
N L(�k)(D), so

(ii) holds. But the sets for which (ii) is true from the �-algebra, so, if we keep in
mind (3), (ii) is true for

Q
N L (Ak).
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Let B be the �-algebra generated by the sets of the form E � Xn+1 � . . .
(n 2 N), where E belongs to

Qn

1 Ak, i.e. E is an element of the internal algebra
generated by the sets of the form E1 � � � � �En (Ek 2 Ak; k = 1; . . . ; n).

Lemma 2. B � A.
Proof. B is generated by the sets of the form E�Xk+1�� � � = D, E 2Qn

1 Ak;
so we have ST�1(D) = E �Xn+1 � � � � �XH 2Qn

! Ak, and the result follows.

Therefore we have the probability space (
Q
N Xk;B;m). If we use the same

notation as in the proof of Lemma 1, then � (P) � B (� (P) is the least �-algebra
containing P), and the inclusion can be strict (as Hoover's example shows). Thus,
the next theorem is not the usual zero-one law.

A set D � Q
N Xk is a tail set if and only if it is closed with respect to a

change of �nitely many coordinates of its elements, i.e. (�1; . . . ; �n; �n+1; . . . ) 2 D

implies (�1; . . .�n; �n+1; . . . ) 2 D for every �1 2 X1; . . . ; �n 2 Xn and every n 2 N .

Theorem. If D 2 B is a tail set, then m(D) = 0 or m(D) = 1.

Proof. Let �n;m :
Q
N Xk ! Xn � � � � �Xm (m � n) be the projection, i.e.

�n;m(�1; . . . ; �n; . . . ; �m; . . . ) = (�n; . . . ; �m), Kn;m the internal algebra generated
by the sets of the form En � � � � � Em (Ek 2 Ak ; k = n; . . . ;m; m � n) Fn;m the
�-algebra generated by the sets of the form ��1n;m(E) (E 2 Kn;m) and let Fn;1 be

�
�S

m�nFn;m
�
. Notice that Fn;m � Fn;m+1. Therefore

S
m�nFn;m is an algebre.

Finally we put F =
S
n2N Fn;1. This is the �-algebra of tail sets belonging to B.

Let D 2 F . Then D 2 Fn;1 i.e. D 2 �
�S

n2N F1;n

�
, so, there are sets

Ek 2 F1;n such that m(D�En) ! 0. But, D 2 Fn+1;1 and the sets En and
D are independent, i.e. m(D \ En) = m(D) � m(En). From this it follows that
m(D) = m(D)2 and hence m(D) must be zero or one.

Open questions: (i) Is the Fubini theorem or the zero-one law true for the
�-algebra A ?

(ii) Let B be the completion of B. Are B and A equal?

REFERENCES

[1] A. N. �Sirjaev, Vierojatnost, Nauka, Moskva, 1980.

[2] H. J. Keisler, Hyper�nite model theory in Logic Colloquium '76 (Eds. R. O. Gandy and J.
M. E. Hyland), North-Holland, Amsterdam, 1977. pp. 6{110.

[3] H. J. Keisler, An In�nitesimal Approach to Stochastic Analysis, Mem. Amer. Math. Soc.,
to appear.

[4] K. D. Stroyan, J. M. Bayod, Foundations of In�nitesimal Stochastic Analysis, North-
Holland, Amsterdam, to appear.

[5] K. D. Stroyan, W. A. J. Luxemburg, Introduction to the Theory of In�nitesimals, Academic
Press, New York, 1976.

Prirodno-matemati�cki fakultet (Received 20 121 1984)
Odsek za matematiku
Vojvode Putnika 43
71000 Sarajevo
Jugoslavija


