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HIGHER-LEVEL SEQUENT-SYSTEMS FOR

INTUITIONISTIC MODAL LOGIC

Kosta Do�sen

Abstract. This paper presents higher-level sequent-systems for intuitionistic analogues of
S5 and S4. As in [3] rules for modal constants involve sequents of level 2, i.e. sequents having
collections of ordinary sequents of level 1 on the left and right of the turnstile. Starting from a
canonical higher-level sequent formulation of S5, the restriction of sequents of level 2 to those with
the single-conclusion property produces S4, without changing anything else. A similar restriction
on sequents of level 1 produces Heyting S5, and if this restriction is made on sequents of both
level 1 and 2, we obtain Heyting S4. The paper contains a brief discussion of Kripke-style models
for the intuitionistic propositional modal logics in question.

In [3] we have presented sequent formulations of the modal logics S5 and S4
based on sequents of higher levels: sequents of level 1 are like ordinary sequents,
sequents of level 2 have collections of sequents of level 1 on the left and right of
the turnstile, etc. The rules we gave for modal constants involved sequents of level
2, whereas rules for other customary logical constants of �rst-order logic involved
only sequents of level 1. In this paper we shall show how starting from the same
sequent rules of higher level we can obtain sequent formulations of intuitionistic
analogues of S5 and S4 based on the necessity operator �.

We say that a sequent has the single-conclusion property if its right-hand
side is either a singleton or empty. It is well-known from [7] that it is possible
to obtain a sequent formulation of Heyting's logic out of a sequent formulation
of classical logic just by restricting sequents of level 1 to those with the single-
conclusion property, without changing anything else. In [3] we have shown that the
same restriction applied to sequents of level 2 can produce a sequent formulation
of S4 out of a sequent formulation of S5, without changing anything else. Here
we shall show that starting from the same sequent rules with sequents of level 1
restricted to single-conclusion sequents, if we make no restriction upon sequents of
level 2, we obtain a sequent formulation of an intuitionistic analogue of S5, which
we shall call S5H . If we also restrict sequents of level 2 to singe-conclusion sequents,
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without changing anything else, we obtain a sequent formulation of an intuitionistic
analogue of S4, which we shall call S4H . This is shown succintly in the following
table:

S5 S4 S5H S4H

level 1 restricted restricted

level 2 restricted restricted

To simplify matters we shall concentrate in this paper on propositional logic.
Only in the �nal, �fth section we shall indicate brie
y how to obtain sequent-
systems for �rst-order predicate logics corresponding to S5H and S4H . In the
�rst section we shall present our sequent-systems, and in the second section we
shall show to what Hilbert-style systems these sequent-systems correspond. In
the third section we shall brie
y consider Kripke-style models for our intuitionistic
propositional modal logics. In the fourth section we shall consider alternative bases,
with strict implication � and the possibility operator �, for our intuionistic modal
logics. This paper is a companion to [3], [1] and [4], and we assume the reader is
acquainted with these papers. However, to make this paper more self-contained we
shall brie
y recapitulate some basic notions.

1. Sequent-systems. Let O be the language of modal propositional log-
ic based on the connectives !;^; vee;?;> and �. We use A;B; . . . ; A1; . . . as
schematic letters for formulae of O. We de�ne :A as A ! ?, and A $ B as
(A! B)^ (B ! A). Parentheses are omitted with the assumption that ! and $
bind more strongly than ^ and _.

Starting from O we build the language D as follows. The formulae of O are
formulae of level 0. The empty set sign ; is a set term of any level � 1. Let
An1 ; . . . ; A

n
k
, where k � 1, be distinct formulae of level n; then fAn1 ; . . . ; A

n
k
g is a set

term of level n + 1. If � and � are set terms of level n, then � `n � is a formula
of level n, called a sequent. The set term � [� stands for the union of the sets �
and �, and the set term � + � for the disjoint union of � and � (for details see
[3,x1]).

A sequent � `n � has the single-conclusion property i� � is either a singleton
or ;. A rule is of level n i� the highest level of formulae occurring in it is n. A
rule is level preserving i� all formulae occurring in it are of the same level. The
horizontalization of a level-preserving rule

	

An

is the sequent � `n+1 fAng where � is obtained from the set of premises by omitting
repetitions of formulae.

For our sequent-systems we shall asume the following structural rules:
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Ascending (A)
An

; `n+1 fAng

Descending (D)
; `n+1 fAng

An

Iteration (I)
An

An

Cut (C)
�1 `

n+1 �1 + fAng �2 + fAng `n+1 �2

�1 [ �2 `n+1 �1 [�2

Thinnrng (T)
� `n+1 �

� [ �1 `n+1 � [�1

In all these rules we have n � 0. An instance of a rule R of level n will be denoted
by Rn.

Let the double-line rule
Bn1 . . .B

n

k

An

be an abbreviation for the following list of rules:

Bn1 . . .B
n

k

An
;
An

Bn1
; . . . ;

An

bn
k

:

If R is the name of this double-line rule, R # is the name of the �rst rule in the list,
and R " designates any of the remaining rules in the list. For the connectives of O
we shall give the following double-line rules:

(!)
� + fAg `1 �+ fBg

� `1 �+ fA! Bg

(^)
� `1 �+ fAg � `1 �+ fBg

� `1 �+ fA ^ Bg

(_)
� + fAg `1 � �+ fBg `1 �

�+ fA _ Bg `1 �

(?)
� `1 ;

� `1 f?g

(>)
; `1 �

f>g `1 �

(�)
� + f; `1 fAgg `2 �+ f� `1 �g

� `2 � + f�+ f�Ag `1 �g

Axioms for our sequent-systems will be systematically generated from the
rules by assuming the horizontalizations of all the level-preserving rules, i.e. all the
rules mentioned above except A and D.
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The sequent-system DS5 is obtained from the rules above, and the corre-
sponding horizontalizations, in the full language D. If we assume these rules and
horizontalizations in a restricted version of D where sequents of level 2 must have
the single-conclussion property, everything else remaining unchanged, we obtain
the sequent-system DS4. The sequent-system DS5H is obtained by an analogous
restriction for sequents of level 1 instead of sequents of level 2, and for DS4H we
make this restriction for sequents of both level 1 and level 2. According to Lemma
4 of [3] sequents of all levels higher than 2 are irrelevant for DS5H and DS4H , as
well as for DS5 and DS4.

2. Hilbert-style systems. Let H be the Heyting propositional calculus
axiomatized by the following rule and axiom-schemata:

1. (A! (B ! C))! ((A! B)! (A! C)), 3. A! (B ! A),

4. (C ! A)! ((C ! B)! (C ! A ^ B)), 5. A ^B ! A,

6. A ^ B ! B,

7. A! A _B, 8. B ! A _ B, 9. (A! C)! ((B ! C)! (A _B ! C))

10. ? ! A, 11. >.

The classical propositional calculus C is obtained from H by adding the
axiom-schema:

12:A _ (A! B):

The system S4H is obtained from H by adding the following rule and axiom-
schemata:

� 1.
A

�A
,

� 2. �(A! B)! (�A! �B), � 3. �A! A, � 4. �A! ��A.

The system S5H is obtained from S4H by adding the axiom-schema:

�5: �A _�(�A! B):

The systems S4 and S5 are extensions of C obtained from S4H and S5H
respectively by adding the axiom-schema 12.

The system S4H is what everybody would take as the natural intuitionistic
analogue of S4. This system has been considered in a number of works (see [4]
and [1] for references). On the other hand, there are various nonequivalent systems
which may be considered as intuitionistic analogues of S5. The system S5H , ax-
iomatized equivalently with �A _�:�A rather than our �5, has been considered
in [2], [9], [10], [5], [6] and [4] (in these papers one can �nd also a number of
intuitionistic analogues of S5).

From results concerning Kripke-style models of Section 3, it follows easily that
the containment relations between our modal systems, as shown in the following
chart:
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are proper. With these models it is also easy to show that S4H and S5H are
conservative extensions of the nonmodal system H . The systems S4 and S5 are,
of course, decidable, and the same holds for S4H and S5H (see [9] and [10]). It is
easy to show that S4H has the disjunction property, whereas it is clear that S5H
lacks this property (see [4]). So, S5H may perhaps be considered \intuitionistically
spurious".

It follows from the results of [3] that a formula A of O is provable in DS4 (re-
spectivelyDS5) i� A is provable in S4 (respectively S5). Here we shall demonstrate
the following analogous theorem:

Theorem 1.1. A formula A of O is provable in DS4H i� A is provable in

S4H .

1.2. A formula A of O is provable in DS5H i� A is provable in S5H .

This theorem will follow from the following lemmata:

Lemma 1.1. The rules of S4H are derivable and the axioms of S4H are

provable in DS4H .

1.2. The axiom-schema �5 is provable in DS5H .

Proof: The proof of 1.1 is exactly as in [3] (see Lemma 7.1). For 1.2 we have

(a) f; `1 fAgg `2 f; `1 f�Agg

which is proved as in [3, p. 159]. Then we proceed as follows:

T 2

(�) #

f; `1 fAgg `2 f; `1 f�Agg

f; `1 fAgg `2 f; `1 f�Ag; ; `1 fBgg
; `2 f; `1 f�Ag; f�Ag `1 fBgg

which by applying the horizontalization of (!) #, an instance of (a), and C2 yields
; `2 f; `1 f�Ag; ; `1 f�(�A! B)gg. From that with (_) ", C2, D2 and D1 we
obtain �A _�(�A! B). q.e.d.

For the following translation from D into O:

o(A) is A,

ô(�) is

(
o(An1 ) ^ � � � ^ o(A

n

k ) if � = fAn1 ; . . . ; A
n

kg; k � 1

> if � = ;;

�o(�) is

(
o(An1 ) _ � � � _ o(A

n

k ) if � = fAn1 ; . . . ; A
n

kg; k � 1

? if � = ;;

o(� `n+1 �) is �(ô(�)! ô(�)
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we have:

Lemma 2.1. If An is provable in DS4H , then o(An) is provable in S4H .

2.2. If An is provable in DS5H , then o(An) is provable in S5H .

Proof. 2.1. By induction on the length of proof of An in DS4H . For A and
D we use:

A

�(> ! A)
:

For I we use �(A ! A). For C we use �(G1 ! D1 _ A) ^ �(G2 _ A ! D2) !
�(G1 ^ G2 ! D1 _ D2). For T we use �(G ! D) ! �(G ^ G1 ! D _ D1).
For (!) we use �(G ^ A ! B) $ �(G ! (A ! B)). For (^) we use �(G !
A) ^ �(G ! B) $ �(G ! A ^ B). For (_) we use �(G ^ A ! D) ^ �(G ^ B !
D) $ �(G ^ (A _ B) ! D). For (?) and (>) we use A ! A. Finally, for (�) we
use:

�(�P ^�A! �(G! D))$ �(�P ! �(G ^�A! D)):

To prove this last formula in S4H from left to right we proceed as follows:

�(�P ^�A! �(G! D))
�(�P ^�A! (G! D))
�(�P ! (G ^�A! D))
��(�P ! (G ^�A! D))
�(�P ! �(G ^�A! D))

The converse is obtained analogously.

2.2. We proceed as for 2.1. The only additional case is for (�), where we use:

�(�P ^�A! �C _ (G! D))$ �(�P ! �C _�(G ^�A! D)):

To prove this formula in S5H from left to right we show �rst that �(�A _ B) !
�A _�B is provable in S5H . We have:

�(�A! B)! (�(�A _ B)! �A _�B) and

�A! (�(�A _ B)! �A _�B)

and we apply � 5. Then we proceed as follows:

�(�P ^�A! �C _�(G! D))
�(�A! (�P ! �C _�(G! D)))

�(�A _�(�A! �(G! D)))
�(�A _ (�A! �(G! D)))

�((�P ! �C _�(G! D)) _ (�A! �(G! D)))
�(�P ! �C _ (�A! �(G! D)))
�(�P ! �C _ (G ^�A! D))
��(�P ! �C _ (G ^�A! D))
�(�P ! �C _�(G ^�A! D)) .

For the last step we use �(�C _ (G ^�A! D))! �C _�(G ^�A! D). This
proves our formula from left to right. The converse is quite straightforward. q.e.d.



Higher-level sequent-systems for ituitionistic modal logic 9

From Lemmata 1.1, 1.2, 2.1 and 2.2 we easily infer Theorem 1.1 and 1.2.

3. Kripke-style models. For S4H and S5H we shall now give Kripke-style
models based on two accessibility relations, one intuitionistic and the other modal.
These models are dealt with extensively in [1] and [4]. We shall �rst recapitulate
brie
y the basic notions we need.

An H� frame is hX;RI ; RM i where X 6= ;, RI � X2 is re
exive and tran-
sitive, RM � X2, and RIRM � RMRI (R1R2 is short for R1 Æ R2). The variables
u; v; w; u1 . . . range over X . An H� model is hX;RI ; RM ; V i where hX;RI ; RM i
is an H� frame and the valuation V is a mapping from the set of propositional
variables of O to the power set of X such that the following Heredity Condition is
satis�ed for every propositional variable p:

8u1; u2(u1RIu2 ) (u1 2 V (p)) u2 2 V (p))):

The relation j= in u j= A is de�ned as usual, except that for ! it involves RI as
in intuitionistic Kripke models, whereas for � it involves RM as in modal Kripke
models. A formula A holds in an H� model i� (8u 2 X)u j= A; and A holds in a
frame Fr (i.e. Fr j= A) i� A holds in every model with this frame. An H� frame is
condensed i� RIRM = RM , and it is strictly condensed i� RIRM = RMRI = RM .
We use R� as an abbreviation for RMRI .

In [1] and [4] one can �nd a proof of the following statements, for every H�
frame Fr:

all theorems of H plus �1 and �2 hold in Fr,

Fr j= �A! A i� R� is re
exive,

Fr j= �A! ��A i� R� is transitive.

Here we shall prove the following lemma:

Lemma 3. For every H� frame Fr we have Fr j= �A _ �(�A ! B) i�

R�1
�
R� � R� (i.e. R� is Euclidean).

Proof. ()) Suppose not R�1
�
R� � R�, i.e. for some v; v1 and v2 we have

vR�v1 it and vR�v2 and not v1R�v2. Next let 8u(u j= p , v1R�u) and 8u not

u j= q. It is easy to show that there is an H� model such that this is satis�ed.
In this model not v2 j= p, and hence not v j= �p. Also, v1 j= �p and not v1 j= q.
Hence, not v j= �(�p! q), and so we obtain not v j= �p _�(�p! q).

(() Suppose not Fr j= �A _ �(�A ! B). So, for some v we have not

v j= �A and not v j= �(�A ! B). Hence, there is a v2 such that vR�v2 and not

v2 j= A, and there is a v1 such that vR�v1 and v1 j= �A and not v1 j= B. But
from the euclideanity of R� it follows that v1R�v2, and since v1 j= �A and not

v2 j= A we obtain a contradiction. q.e.d.

In [4] one can �nd a proof of the following statement: A is provable in S4H i�
A holds in every (condensed, strictly condensed) H� frame where R� is re
exive
and transitive. Analogously, we can establish that A is provable in S5H i� A holds
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in every condensed, strictly condensed) H� frame where R� is re
exive, transitive
and Euclidean.

Of course, R� is re
exive, transitive and Euclidean i� R� is re
exive, tran-
sitive and symmetric. Since Fr j= A _ �(�A ! B) i� R� is symmetric, the
axiom-schema A _�(�A! B) can replace �5 in S5H . As �5, the axiom-schema
�A _ �:�A corresponds to the euclideanity of R�, and similarly, A _ �:�A
corresponds to the symmetry of R�.

4. Alternative bases. As stated in [3], if the strict implication A � B is
de�ned as �(A! B), in DS4H and in all stronger sequent-systems we can derive
the rules:

(�)
� + ffAgg `1 fBgg `2 � + f� `1 �g

� `1 � + f� + fA � Bg `1 �g

and their horizontalizations. Alternatively, we could base O and our modal systems
in D on the connective � and the rules (�). Then by de�ning �A as > � A we
can derive the rules (�) and their horizontalizations.

If the possibility operator is de�ned by �A =df :�:A, then in DS5H and
DS4H we can derive the rules:

(�)
� + ffAg `1 ;g `2 �+ f� `1 �g

� `2 �+ f� `1 �+ f�Agg

and their horizontalizations. These rules are now available only with � empty,
whereas with DS5 and DS4 it need not be empty. However, � and the double-
-line rule (�) cannot serve as an alternative basis for DS5H and DS4H . Take
the systems exactly like DS5H and DS4H save that � is replaced by �, (�) is
replaced by (�), and �A is de�ned as :�:A. In these systems we cannot prove
�A ! A. Otherwise, in the system S5H we could prove ::�::A ! A, and it is
easy to construct an H� model with R� re
exive, transitive and Euclidean such
that ::�::A! A is falsi�ed in this model (cf. [6], [8]).

5. First-order modal logic. It is not diÆcult to �nd along the lines of
[3], higher-level sequent formulations of �rst-order predicate logics corresponding
to S5H and S4H . If O is now the language of the �rst-order predicate calculus with
the constants !;^;_;?;>;8; 9 (and eventually =), we can proceed exactly as in
[3] to obtain �rst-order sequent-systems corresponding to DS5H and DS4H . The
additional rules are Substitution for individual variables and two double-line rules
for quanti�ers:

(8)
� `1 �+ fA(x)g

� `1 �+ f8xA(x)g

(9)
� + fA(x)g `1 �

�+ f9xA(x)g `1 �

9>>>>=
>>>>;

provided x is not free

in � or �
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(and eventually an additional double-line rule for identity), where none of these
rules is subject to horizontalization. The restrictions made upon D to obtain �rst-
-order sequent-systems corresponding to DS5H and DS4HH are as in Section 1. It
is a straightforward matter to obtain Hilbert-style systems corresponding to these
�rst-order sequent-systems.

It is easy to show that the Barcan Formula 8x�A! �8xA is provable in the
�rst-order sequent-system corresponding to DS5H : since the formulae :�:�A!
A and A! �:�:A are provable in DS5H (the �rst of these schemata can replace
�5 for the axiomatization of S5H), we have

8x�A! �A
:�:8x�A! :�:�A
:�:8x�A! A
:�:8x�A! 8xA
�:�:8x�A! �8xA
8x�A! �8xA .

A fortiori, the Barcan Formula is provable in the �rst-order sequent-system
corresponding to DS5. This formula is not provable in the �rst-order sequent-
-system corresponding to DS4, and hence it cannot be provable in the �rst-order
sequent-system corresponding to DS4H .

Considerations concerning the uniqueness of characterization of � from [3]
apply in the present context too.
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