
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 38 (52), 1985, pp. 207{213

HEURISTIC FOR AVOIDING SKOLEMIZATION

IN THEOREM PROVING

Irena Pevac

Abstract. Some further possibilities of the theorem prover of the system GRAPH [2]-[5]
are described. Instead of skolemization of a formula, we transform the subgoal into an equivalent
form or into a stronger subgoal with less quanti�ers, in a human like manner. A heuristic is
proposed how to choose, among several possibilities, a stronger subgoal which would be proved
more easily. Although an incomplete method, it is suitable for interactive work since human
behavior is imitated. If machine's choice is not suitable, the user can appropriately modify the
transformation.

1. Introduction. In [3] the theorem prover of the system GRAPH is de-
scribed and in [2] the main features of knowledge organization are given. The
prover is a system that proves theorems in classical �rst order logic, and some ex-
tensions of that by subgoaling, splitting, rewriting, simpli�cation and some other
procedures. We shall suppose here that the reader is familiar with these papers. In
[3] a heuristic for selecting de�nition or lemma instantiations is proposed by which
we get a subgoal which is easier to prove. Generally, we create a proof tree whose
leaves are subgoals with the property: each predicate from the conclusions appears
also on the left hand side of the main implication of the subgoal. When we delete
universal (existential) quanti�ers on the top of the right (left) side of the subgoal,
it is, generally speaking, still too complicated to be proved easily. At this moment
the elimination of other quanti�ers becomes actual.

Most of the authors use skolemized formulas in their provers. ln some cases
when the machine is not able to �nd the most general substitution some further
improvements are o�ered such as multiple copies rule in [1].

The author of the present paper is of the opinion that the skolemization is not
suitable in interactive provers, because it is too far from human way of creating the
proof. In this paper it is described, how to delete some of quanti�ers in a human
like manner and, hence, to avoid skolemization.

AMS Subject Classi�cation (1980): Primary 68G15



Heuristic for avoiding skolemization in theorem proving 201

We start similarly as in the usual skolemization procedure. In the �rst step
we delete universal quanti�ers being the top operations of the subgoal. Further, we
delete those quanti�ers which could come as universal to the top. This will be done
without transforming the subgoal i. e. without moving the quanti�ers to the top.
After that the rest of quanti�ers will be pushed towards the predicates as close as
possible.

We say that a formula 1I is stronger than F2 (or F2 is weaker then F1) if
F1 ) F2 is true.

In the second step we propose a way of creating a stronger subgoal to be
further proved instead of the current one, based on the use of valid formulas:

(8X)F (x)) F (t1) ^ F (t2) ^ � � � ^ F (tn);

F (t1) _ F (t2) _ � � � _ F (tn)) (9x)F (x):

In the fully automatic mode the machine itself �nds where and when the
transformation is permitted, and the terms t1; t2; . . . ; tn are chosen automatically.
In a way, this part is analogous to the use of multiple copies rule (i.e. it is used in
similar situations in the formula) but in [1] it is not possible to decide automatically
how many copies should be taken in advance. In addition, our method solves
partially the uni�cation level problem at the same time.

In the interactive mode, the human selects a quanti�er by telling the name
of the variable it bounds. We accept the convention that variables bounded by
di�erent quanti�ers are di�erently denoted, and no free variable is denoted by a
symbol used for a bound variable. The system �rst checks whether its position in
the subgoal allows such a transformation. In the case of a positive answer it o�ers
the user the choice of terms. If the user does not approve the machine's choice
he will be asked to tell his choice of terms. Using the human idea of the global
strategy of the proof the uni�cation is solved on higher level.

Let us now introduce some de�nitions and a theorem which will be used in
further development of the above ideas. Let us recursively assign a sign + or - to
each subformula of the given formula as described in [1].

De�nition. The whole formula has positive sign.

If A ^B or A _B is positive(negative), then so are A and B.

If :A is positive (negative), then A is negative (positive).

If A ) B is positive (negative), then A is negative (positive), and B is positive
(negative).

If (8x)A or (9x)A is positive (negative), then so is A.

Let us introduce a presentation of the formula in the tree form in the following
way. Each inner node of tree contains the logical operation and the sign of the
subformula whose root is this operation. The nodes on the leaves contain predicates
and the corresponding sign.

Example 1. The formula (9X1)(9X2):X1 = X2 _ (8X)(8Y )(X = Y _

(9Z)R1(X;Z))) (8X3)(9Y 1)R1(X3; Y 1) is presented by a tree on Fig. 1.



202 Pevac

Fig. 1

The following theorem is useful in creating new subgoals.

Theorem. If we replace a positive (negative) subformula of some formula G
with a stronger (weaker) formula the resulting formula is stronger then G.

An analogous theorem for creating a weaker resulting formula can be for-
mulated, and the proof is obtained easily by induction on the number of logical
operations in the formula.

2. Elimination of quanti�ers based on equivalent logical transfor-

mations. Let us mention the following logically valid formulas:

A _ (8x)B(x), (8x)(A _ B(x)); A _ (9x)B(x) , (9x)(A _B(x));

A ^ (8x)B(x), (8x)(A ^ B(x)); A ^ (9x)B(x) , (9x)(A ^B(x));

A) (8x)B(x), (8x)(A) B(x)); (9x)B(x) ) A, (9x)(A ) B(x));

(8x)B(x) )A,(9x)(B(x) ) A); (9x)B(x) )A, (8x)(B(x) ) A)(�)

:(8x)B(x) , (9x):B(x); (9x)B(x) , (8x):B(x);(�)

(8x)(8y)F (x; y)(8y)(8x)F (x; y);

(9x)(9y)F (x; y) , (9y)(9x)F (x; y);

where x is not free in A.

If we apply these formulas from left to right the quanti�ers are moved up
in the tree. When using the logically valid formulas labeled by an asterisk, we
can see that moving through negation or moving through implication from the left
results in changing the type of the quanti�er (i.e. universal becomes existential and
conversely) as well as changing the sign of the subformula at the time same. As



Heuristic for avoiding skolemization in theorem proving 203

we can delete a universal quanti�er on the top of the tree, we are interested to
see, in advance, which quanti�er could be moved to the top as universal, without
performing such transformations.

Since the top operation is positive by de�nition we can see that the necessary
condition is that the quanti�er is universal and signed positively or existential and
signed negatively.

Finally, as we are not permitted to change the order of universal and exis-
tential quanti�ers we have the following algorithm for deleting the quanti�ers that
could come as universal to the top of subgoal without performing actual transfor-
mation of the subgoal.

Algorithm. For each positive universal quanti�er or negative existential
quanti�er let us examine the path from this node to the top of the tree. If there are
no nodes labeled by a positive existential or negative universal quanti�er on this
path the quanti�er can be moved to the top as a universal one. Hence, we shall
delete all the quanti�ers satisfying the above condition together with the bound
variable. After that we try to push the rest of quanti�ers to predicates as close as
possible. Now we use the above logically valid formulas from the right to the left as
long as possible. In this case we actually perform the transformations. The main
features of these transformations are described in [4].

Example 2. In the formula from example 1. we have the following nodes
9X1;�, 9X2;�, 9Z;�, and 8X3;+ as candidates for elimination. The �rst, second
and fourth could be deleted as explained above. The resulting formula is :X1 �
X2 ^ (8X)(8Y )(X = Y _ (9Z)R1(X;Z)) ) (9Y 1)R1(X3; Y 1). After pushing
the rest of quanti�ers closer to predicates we have :X1 = X2 ^ (8X)((8Y )X =
Y _ (9Z)R1(X;Z))) (9Y 1)R1(X3; Y 1).

3. Quanti�er elimination by introducing a stronger subgoal. Using
the result stated in theorem above we shall try to replace a positive subformula of
the type (9x)F (x) with the disjunction F (t1) _ F (t2) _ � � � _ F (tn). Analogously,
a negative, subformula of the type (8x)F (x) will be replaced with the conjunction
F (t1)^F (t2)^ . . .F (tn). Of course, when performing such transformation, we have
to �nd out how many disjuncts (conjuncts) we need, and which terms t1; t2; . . . ; tn
should be taken. We propose the following heuristic.

Let G denote a current subgoal and let (A1; sgnA1), (A2; sgnA2); . . . ,
(An; sgnAn) be all the subformulas of G of the type Ai � (Qiyi)Fi(yi) with
Qi denoting the universal (existential) quanti�er if sgnAi is negative (positive)
respectively. If there is more then one such subformula in G we shall, select one
with quanti�er attacking less predicates and acting on a shorter subformula. With-
out loss of generality we shall suppose that selected subformula is negative of type
(8y)F (y). Let us extract predicate letters attacked by this quanti�er and let us
mark the places in these predicates where variable y occurs. For each symmetric
predicate we mark also the places where the commutation is permitted. After that



204 Pevac

we have to �nd out all the occurrences of the extracted predicates in the rest of
formula G. Finally, we pick up the free variables or ground terms from the marked
positions, and among them we select those which are not free in formula F . The
free variables in F will not be avoided only in the case when none of the predi-
cates of F is symmetric. If the variables on marked positions are bound we apply
this procedure to the next quanti�er. Once we have terms t1; t2; . . . ; tn we have
determined the logically valid formula which will be used to create a new stronger
subgoal. This new subgoal is sent to the block of \trivial transformations" where
the subgoal is splitted and reduced as described in [3]. Since some new subgoals
could be created after applying this block, we try to prove each of them (see [3]).
For the unproved subgoals we repeat the elimination of quanti�er and the above
mentioned, until all the subgoals are proved, or nothing that has been mentioned
can be performed.

The proposed heuristic is especially eÆcient in cases when the predicates of
the subformula happen to be equivalence relations or at least symmetric relations.
It is based on the idea that there should be an interaction between the predicates of
the considered subformula and those placed in the rest of formula. The symmetry
of some predicate is specially noted in the theorem prover of the system GRAPH.
It is incorporated as a part of system's knowledge and it is not again proved during
the proof of the main goal.

Let us now illustrate the above by some examples. Although the examples
are of necessity drawn from arithmetical graph theory introduced in [2] we hope
that heuristic can be useful outside this area too.

Example 3. Let us continue with the formula from Example 2.

:X1 = X2 ^ (8X)(8Y )X = Y _ (9Z)R1(X;Z))) (9Y 1)R1(X3; Y 1):

In the tree of the formula we search for the nodes having universal quanti�er la-
beled + or the nodes having existential quanti�er labeled �. There are three
such nodes 8X ;�, 8Y ;�, 9Y 1;+. The node 8Y ;� will be considered �rst. The
only predicate attacked by this quanti�er is =. Since = is a symmetric predi-
cate we shall mark both places. Now we search for the = in the rest of formu-
la. As X1 and X2 happen to be free and they do not appear in the considered
subformula, consequently we have determined X1 and X2 as terms. Hence, we
shall use valid formula (8Y )F (Y ) ! F (X1) ^ F (X2). The resulting formula is
:X1 = X2 ^ (8X)(X = X1 ^ X = X2 _ (9Z)R1(X;Z)) ) (9Y 1)R1(X3; Y 1).
The subgoal remains unchanged after \trivial transformations" given in [3] and a
direct testing of the validity as given in [3] is not successful. So, we start again
with the quanti�er elimination. Now the candidates are the following nodes: 8X ;�
and 9Y 1;+. We choose 9Y 1 as it attacks only one predicate. After marking the
predicate and the relevant places, we can see that both marked positions of R1 in
the rest of the formula contain bound variables. We take both positions because
of symmetry of R1. (As explained in [2], R1(X;Y ) is symmetric predicate with
the meaning \X and Y are adjacent"). Further, we try the next candidate i.e.
the node 8X ;�. The predicate letters in the subformula are = and R1. Both



Heuristic for avoiding skolemization in theorem proving 205

are symmetric and we mark their both places. The marked positions of relevant
predicates in the rest of formula contain X1; X2; X3; Y 1. The variable Y 1 is bound
and X1 and X2 are free in the considered subformula. The valid formula of the
form (8X)F (X) ! F (X3) is used for creation of a stronger subgoal. The result
is :X1 = X2 ^ ((X3 = X1 ^ X3 = X2) _ (9Z)R1(X3; Z)) ) (9Y 1)R1(X3; Y 1).
Applying the block of \trivial transformations" to this subgoal it will be split into
the following two subgoals:

:X1 = X2 ^X3 = X1 ^X3 = X2) (9Y 1)R1(X3; Y 1)

:X1 = X2 ^ (9Z)R1(X3; Z)) (9Y 1)R1(X3; Y 1):

Both of them can be proved in the block for testing the validity of a subgoal.

In some further examples the outline of the proof will be given. The meanings
of predicates occurring in further examples are the same as given in [2] i.e. R4(X;Y )
means \X and Y are joined by a walk", and S2(X;Y;K) means \X and Y are joined
by a walk of length K".

Example 4.

Example 5.

Example 6.

(8X)(:S2(X;Y 1; 0)) S2(X;Y 1; 1))) (9K)(S2(X1; Y 1;K))

(8X)(:S2(X;Y 1; 0)) S2(X;Y 1; 1))) S2(X1; Y 1; 0) _ S2(X1; Y 1; 1):



206 Pevac

4. Some �nal comments. Let us note that in the case of stating the
subgoal from Example 6. in an equivalent form as

(8X)(X 6= Y 1) S2(X;Y 1; 1))) (9K)S2(X1; Y 1;K)

(as S2(x; y; 0), x = y holds) the machine choice would be the valid formula of the
form F (1)) (9K)F (K) which is not good. The same would happen if the system
does not know that x 6= y , :x = y holds.

We can overcome this problem by consulting the digraph of de�nitions and
lemmas described in [3]. The human does the same having the global knowledge
of the theory considered.

Another problem appears in the case when the marked positions contain
bound variables, and when we select the next quanti�er, it could happen that
marked positions contain bound variables from the �rst quanti�er. One way of
handling this situation in fully automatic work would be to take us many di�erent
new variables as many di�erent bound variables we have on the marked places.

Of course, the problem of incompleteness of the heuristic remains. But most
of the experts in theorem proving area have agreed that for real e�ectiveness of
the prover we must not strangle the mechanism that does it by making sure that
it handles every case. The idea here, was to make a procedure of dealing with and
deleting of quanti�ers that is near to the human way of creating proofs and, hence,
to make the man-machine interaction easier.

Finally, let us �nish with the remark from [7]: \It is quite probable that
heuristicaly-driven provers would not be complete, but then people, who are the
best theorem provers so far, probably are not complete either."

REFERENCES

[1] W. Bledsoe, M. Tyson, The UT Interactive Prover, Univ. Texas Math. Dept., Memo ATP
17A, june, 1978.

[2] D. Cvetkovi�c, Discussing graph theory with a computer IV, Knowledge organization and
examples of theorem proving, Proc. Fourth Yugoslav Seminar on Graph Theory, Novi Sad,
1983.

[3] D. Cvetkovi�c, I. Pevac, Man-machine theorem proving in graph theory, to appear in Arti-
�cial Intelligence.

[4] D. Cvetkovi�c, I. Pevac, Algorithms for transforming the �rst order sentences in their nat-
ural form, Publ. Elektrotehn. Fak., Ser. Mat. Fiz. 735{762 (1982).

[5] D. Cvetkovi�c, I. Pevac, Discussing graph theory with a computer III, Man-machine theorem
proving, Publ. Inst. Math., (Beograd) (N. S.) 34(48) (1983), 37{47.

[6] D. Pastre, Automatic theorem proving in set theory, Arti�cial Intelligence 10 (1978), 1{27.

[7] W. Bledsoe, L. Henschen, What is automated theorem proving?, J. Automated Reasoning,
1 (1985), 23{28.

Matemati�cki institut (Received 03 10 1984)
Kneza Mihajlova 35/I (Revised 20 05 1985)
11000 Beograd
Yugoslavija


