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ISOTROPIC SECTIONS AND CURVATURE PROPERTIES

OF HYPERBOLIC KAEHLERIAN MANIFOLDS

Georgy Ganchev and Adrijan Borisov

Abstract. In [4,2] curvature properties of pseudo-Riemannian manifolds were investigated
with respect to isotropic vectors and isotropic sections. Further, analogous properties have been
treated in [1] for Kaehlerian manifolds with an inde�nite metric. In this paper we consider hyper-
bolic Kaehlerian manifolds, and study how the curvature properties of one- and two-dimensional
isotropic tangential spaces determine the curvature properties of the manifold.

1. Preliminaries

Let M be a 2n-dimensional hyperbolic Kaehlerian manifold, i.e. M is a Rie-
mannian manifold with an inde�nite metric g and an almost product structure
satisfying the conditions:

(1) p2 = id; g(PX;PY ) = �g(X;Y )
for arbitrary vector �elds X , Y and rP = 0. The metric g is of signature (n; n)
and P trace = 0.

R, � and T will stand for the curvature tensor, the Ricci tensor and the scalar
curvature respectively. The curvature tensor R satis�es the condition

(2) R(X;Y; Z; U) = �R(X;Y; PZ; PU)
for arbitrary vectors in the tangential space T , M , p in M . The Ricci tensor � has
the property

(3) �(X;Y ) = ��(PX;PY ); X;Y in TpM:

Further, we consider the tensors:

'(Y; Z; U) = g(Y; Z)�(X;U)� g(X;Z)�(Y; U)

+ g(X;U)�(Y; Z)� g(Y; U)�(X;Z);

 (X;Y; Z; U) = �g(Y; PZ)�(X;PU) + g(X;PZ)�(Y; PU)

� g(X;PU)�(Y; PZ) + g(Y; PU)�(X;PZ)

+ 2g(X;PY )�(Z; PU) + 2g(Z; PU)�(X;PY );
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�1(X;Y; Z; U) = g(Y; z)g(X;U)� g(X;Z)g(Y; U);

�2(X;Y; Z; U) = �g(Y; PZ)g(X;PU) + g(X;PZ)g(Y; PU)

+2g(X;PY )g(Z; PU):

Let � be a section (2-plane) in TpM . The section a is said to be nondegenerate,
weakly isotropic, strongly isotropic, if the rank of the restriction of the metric g on
� is 2, 1, 0 respectively. With respect to the structure P a section � is said to be
holomorphic (totally real) if P� = �(P� 6= �; P� ? �).

We shall use two kinds of special bases of TpM :

1) An adapted basis fa1 . . . ; an;x1; . . . ; xng is characterized with the property
that the matrices g and P with respect to such a basis are

g =

��In 0
0 In

�
; P =

�
0 In
In 0

�

where In is the unit matrix.

2) A separate basis f�1; . . . ; �n; �1; . . . ; �ng consists of eigen vectors of P , so
that f�1; . . . ; �ng form a basis of the eigen space V +, corresponding to the eigen
value +1 of P . The vectors f�1; . . . ; �ng form a basis of the eigen space V �. With
respect to a separate basis the matrices g and P are

P =

�
0 �In
�In 0

�
; g =

��In 0
0 In

�
:

The following equation is ful�lled TpM = V + � V � (nonorthogonal). The second
condition of (1) implies that every eigen vector � of P is isotropic, i.e. g(�; �) = 0.
Given an adapted basis, one obtains a separate basis by the formulae:

�i = (ai + xi)=
p
2; �i = (ai � xi)=

p
2; i = 1; . . . ; n:

These formulae give also an inverse transition.

In what follows, x, y, z will denote unit space-like vectors, i.e. g(x; x) = 1; a,
b, c will denote unit time-like vectors, i.e. g(a; a) = �1; u, r, v will denote isotropic
vectors which are not eigen vectors, i.e. g(u; u) = 0, Pu 6= �u; �, �, � will denote
eigenvectors of P , i.e. P� = ��.

Taking into account both structures, we �nd the following types of holomor-
phic and totally real sections in TpM :

A. Holomorphic sections.

A1. Nondegenerate holomorphic sections. These sections have an orthonor-
mal basis of type fx; Pxg or fa; Pag and a basis of type f�; �g, P� = �, P� = ��,
g(�; �) 6= 0.
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A2. Strongly isotropic holomorphic sections of hybrid type. These sections
exist by n � 2, and have a basis of type fu; Pug. Another kind of useful bases for
such sections are f�; �g, P� = �, P� = ��, g(�; �) 6= 0.

A3. Strongly isotropic holomorphic sections of pure type. By n � 2 these
sections are the sections in V + and in V �.

B. Totally real sections.

B1. Nondegenerate totally real sections of pure type. These sections exist
by n � 2 and have an orthonormal basis of type fx; yg, g(x; Py) = 0 or fa; bg,
g(a; P b) = 0.

B2. Nondegenerate totally real sections of hybrid type. These sections exist
by n � 2 and have an orthonormal basis of type fx; ag, g(x; Pa) = 0.

B3. Weakly isotropic totally real sections of the I type. These sections exist
by n � 2 and have a basis of type fx; �g, g(x; �) = 0; fa; �g; g(a; �) = 0.

B4. Weakly isotropic totally real sections of the II type. These sections exist
by n � 3 and have a basis of type fx; ug, g(x; u) = g(x; Pu) = 0; fa; ug, g(a; u) =
g(a; Pu) = 0.

B5. Strongly isotropic totally real sections of the I type. These sections exist
by n � 3 and have a basis of type f�; ug, g(�; u) = 0.

B6. Strongly isotropic totally real sections of the II type. These sections exist
by n � 4 and have a basis of type fu; vg, g(u; v) = g(u; Pv) = 0.

2. Holomorphic curvatures

If � is a nondegenerate section in TpM with a basis fX;Y g, its curvature is
given by

K(�; p) = K(X;Y ) = R(X;Y; Y;X)=�1(X;Y; Y;X):

For an isotropic section such a curvature cannot be de�ned. If fX;Y g forms a basis
of an isotropic section � and

(4) R(X;Y; Y;X) = 0;

this is a geometric property of the section �.

Now, let � be a nondegenerate holomorphic section. Curvatures of such sec-
tions will be called holomorphic sectional curvatures. As for Kaehlerian manifolds,
we have.

Lemma 1. Let T be a tensor of type (0; 4) over TpM with the properties:

(5)

1) T (X;Y; Z; U) = �T (Y;X;Z; U);
2) T (X;Y; Z; U) = �T (X;Y; U; Z);
3) T (X;Y; Z; U) + T (Y; Z;X;U) + T (Z;X; Y; U) = 0;

4) T (X;Y; Z; U) = �T (X;Y; PZ; PU):
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If T has zero holomorphic sectional curvatures, then T = 0.

Proof. From the condition of the lemma it follows that

(6) T (X;PX;PX;X) = 0

for an arbitrary nonisotropic vector X in TpM . Let Y be an arbitrary isotropic
vector. Then Y = �(x + a), � { real number, g(x; x) = �g(a; a) = 1, g(x; a) = 0.
Substituting the vector x+ ta, jtj < 1 in (6), we obtain a polynomial identity

f(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 = 0:

for jtj < 1. This implies c0 = � � � = c4 = 0 and in particular f(1) = 0, i.e.
T (Y; PY; PY; Y ) = 0. Thus, (6) is ful�lled for an arbitrary vector. Now, as in the
case of a Kaehlerian manifold [5], it follows that T = 0.

A hyperbolic Kaehlerian manifold is said to be of constant holomorphic sec-
tional curvature � if K(�; p) = �, does not depend on the choice of the nondegen-
erate holomorphic section � in TpM , p inM . The curvature identity characterizing
these manifolds has been found in [7] with respect to local coordinates. We shall
derive this identity from Lemma 1.

Proposition. [7] A hyperbolic Kaehlerian manifold is of constant holomor-
phic sectional curvature � if and only if

(7) R = �(�1 + �2)=4; � = �=n(n+ 1):

Proof. The proposition follows by applying Lemma 1 to the tensor T =
R� (�=4)(�1 + �2).

The equality (7) implies � = �((n + 1)=2)g, i.e. M is Einsteinian. Hence, if
M is connected, � is a constant on M .

Remark. In [7], hyperbolic Kaehlerian manifolds of constant holomorphic
sectional curvature have been called manifolds of almost constant curvature.

Let K be the vector space of the tensors over TpM having the properties (5).
For T in K; �(T ) and �(T ) will stand for the Ricci tensor and the scalar curvature
with respect to T . The metric g induces in a natural way an inner product in K.
Using the same method as in [6, 8], we obtain the following decomposition theorem
for K.

Theorem 1. The following decomposition of K is orthogonal:

K = K1 �K2 �Kw;

where

1) K1 = fT 2 KjT = �(�1 + �2)=4g;
2) Kw = fT 2 Kj �(T ) = 0g;
3) K2 is the orthogonal complement Kw in K?1 ;
4) K1 � fT 2 Kj �(T ) = �(T )g=2ng;
5) K2 � fT 2 Kj �(T ) = 0g:
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The curvature tensorR of a hyperbolic Kaehlerian manifold has the properties
(5). The component B(R) of R in Kw (Weyl component) is said to be the Bochner
curvature tensor. It is easy to check that this component is

(8) B(R) = R� 1

2n(n+ 2)
('+  ) +

�

4(n+ 1)(n+ 2)
(�1 + �2):

Corollary 1. A hyperbolic Kaehlerian manifold M(2n � 4) is of constant
holomorphic sectional curvature if and only if M is Einsteinian and B(R) = 0.

The Ricci curvature of a direction determined by a nonisotropic vector X is
given by �(X) = �(X;X)=g(X;X). Applying Lemma 1 we obtain

Corollary 2. Let M(2n � 4) be a hyperbolic Kaehlerian manifold. M has
a vanishing Bochner curvature tensor if and only if

(9) K(X;PX)� 4

n+ 2
�(X) +

�

(n+ 1)(n+ 2)
= 0

for an arbitrary nonisotropic vector X in TpM , p in M.

Theorem 2. Let M(2n � 4) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent.

1) R(u; Pu; Pu; u) = 0 for arbitrary u in TpM , i.e. the strongly isotropic
holomorphic sections of hybrid type have the property (4);

2) B(R) = 0.

Proof. Let fa1; . . . ; an;x1; . . . ; xng be an adapted basis for TpM . From the
condition 1) of the theorem we have R(ai + xj ; aj + xi; aj + xi; ai + xj) = 0, i 6= j.
These equalities imply

(10) 6K(ai; xj) + 2K(ai; aj) = K(ai; xi) +K(aj ; xj); i 6= j:

Using u = ai + xi + aj � xj , i 6= j and the condition 1) we obtain

(11) K(ai; aj) = K(ai; xj); i 6= j:

The equalities (10) and (11) give

K(xi; Pxi)� 4

n+ 2
�(xi) +

�

(n+ 1)(n+ 2)
= 0;

which is equivalent to (9) and hence B(R) = 0. The inverse is a simple veri�cation.

3. Totally real sections

The curvatures of nondegenerate totally real sections are said to be totally
real sectional curvatures.
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Lemma 2. LetM(2n � 6) be a hyperbolic Kaehlerian manifold. The following
conditions are equivalent:

1) R(x; a; a; x) = 0 whenever a ? x, Px, i.e. the totally real sectional curva-
tures of hybrid type are zero;

2) R(x; y; y; x) = 0 whenever x ? y, Py, i.e. the totally real sectional curva-
tures of pure type are zero;

3) R = 0.

Proof. Let fx; y; ag be an orthogonal triple spanning a 3-dimensional totally

real space. For the pair fx; a0 = (a + ty)=
p
1� t2g; jtj < 1 we have a0 ? x; Px.

Substituting this pair into the condition 1) of the lemma, we get R(x; a + ty; a +
ty; x) = 0. The corresponding polinomial identity gives R(x; y; y; x) = 0, i.e. 1)
implies 2). The inverse follows in a similar way.

Now, let fx; y; zg be orthogonal and span a 3-dimensional totally real space.

Applying 1) to the vectors (x � y)=
p
2, (Px + Py)=

p
2 and using 2) we �nd

K(x; Px) + K(y; Py) = 0. Analogously, K(y; Py) + K(z; Pz) = K(x; Px) +
K(z; Pz) = 0. Therefore K(x; Px) = 0 and Lemma 1) implies R = 0.

The following theorem has an easy proof using Lemma 2.

Theorem 3. Let M(2n � 6) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) M is of constant totally real sectional curvature of hybrid type. i.e.
K(a; x) = v, whenever ? x; Px;

2) M is of constant totally real sectional curvature of pure type, i.e. K(x; y) =
v(K(a; b) = v), whenever x ? y; Py (a ? b; P b);

3) M is of constant holomorphic sectional curvature � = 4v.

Theorem 4. Let M(2n � 4) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(x; �; �; x) = 0 whenever fx; �g spans a weakly isotropic totally real section
of I type;

2) B(R) = 0.

Proof. Let the pair fx; yg be orthogonal and span a totally real section.
Applying the condition 1) of the theorem to the pair fx; � = y + Pyg we obtain
(12) R(x; y; y; x) +R(x; Py; Py; x) = 0:

Now, we substitute the pair fx; yg in (12) by f(x + y)=
p
2; (x � y)=

p
2g and lin-

earizing we �nd

(13) 8K(x; y) = K(x; Px) +K(y; Py):

Further, as in the proof of Theorem 2, (12) and (13) give B(R) = 0.
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The inverse follows immediately by taking into account that �(�; �) = 0.

Theorem 5. Let M(2n � 6) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(x; u; u; x) = 0, whenever fx; ug spans a weakly isotropic totally real
section of the II type;

2) M is of constant holomorphic sectional curvature.

Proof. Let fa1; . . . ; an;x1; . . . ; xng be an adapted basis for TpM . Applying
the condition 1) of the theorem to the pairs fxi; xj + akg (i; j; k - di�erent), we
�nd K(ai; xj) = const; i 6= j. This is equivalent to the condition 1) of Theorem 3.
Hence, M is of constant holomorphic sectional curvature.

The inverse is easy to check.

Theorem 6. Let M(2n � 6) he a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(�; u; u; �) = 0, whenever f�; ug spans a strongly isotropic totally real
section of the I type;

2) B(R) = 0.

Proof. Let f�1; . . . ; �n; �1; . . . ; �ng be a separate basis for TpM . Applying the
condition 1) to the pair f�i; �j + ��kg, � 6= 0 (i; j; k - di�erent) we obtain

(14) 0 = R(�i; �j ; �j ; �i); i 6= j:

The pairs f�i; �jg, i 6= j span strongly isotropic holomorphic sections of hybrid type
and (14) is equivalent to the condition 1) of Theorem 2. Hence, B(R) = 0.

Theorem 7. Let M(2n � 8) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(u; v; v; u) = 0, whenever fu; vg spans a strongly isotropic totally real
section of the II type;

2) B(R) =).

Proof. Let f�1; . . . ; �n; �1; . . . ; �ng be a separate basis for TpM . Substituting
fu = �i + ��j ; v = ��k + �lg, � 6= 0 (i; j; k; l - di�erent) in the condition 1), we get
R(�i; �l; �l; �i) = 0, i 6= 1, which is (14) and therefore B(R) = 0.

Theorem 8. Let M(2n � 8) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(xi; xj ; xk; xl) = 0, (i; j; k; l - di�erent), whenever fa1; . . . ; an;xi; . . . ; xng
is an adapted basis;

2) K(xi; xj) +K(xk; xl) = K(xj ; xk) +K(xj ; xl), (i; j; k; l - di�erent) when-
ever fa1; . . . ; an;xi; . . . ; xng is an adapted basis;

3) B(R) = 0.
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This theorem is analogous to a theorem in [9] for Kaehlerian manifolds and it
can be checked in a similar way taking into account the properties of the structure
P .

4. Pinching problems

A Ricci curvature cannot be de�ned for an isotropic direction. If X is an
isotropic vector and �(X;X) = 0, this is a geometric property of the isotropic
direction, de�ned by X .

The following statement is a slight modi�cation of a result in [3].

Lemma 3. Let M be a hyperbolic Kaehlerian manifolod. The following condi-
tions are equivalent:

1) �(u; u) = 0, for arbitrary u;

2) � = (�=2n)g, i.e. M is Einsteinian.

Theorem 9. Let M(2n � 4) be a hyperbolic Kaehlerian manifold. If the
holomorphic sectional curvatures in every point are bounded, i.e. for an arbitrary
nondegenerate holmorphic sertion � in TpM

(15) jK(�; p)j � c(p);

then M is of constant holomorphic sectional curvature.

Proof. Let x = u+ a, a ? u; Pu and � be the holomorphic section spanned
by f(x+ ta=

p
1� t2; (Px+ tPa)=

p
1� t2, jtj < 1. From condition (15) we get

jR(x+ ta; Px+ tPa; Px+ tPa; x+ ta) � (1� t2)2c(p):

Hence, R(u; Pu; Pu; u) = 0 and Theorem 2 implies B(R) = 0, i.e.

4

n+ 2
�(x) = K(x; Px) +

�

(n+ 1)(n+ 2)
:

This equality gives that the Ricci curvatures in every point are bounded

(16) j�(x)j � c0(p):

Substituting x by (x+ ta)=
p
1� t2, jtj < 1 in (16), we �nd �(u) = 0 and Lemma 3

implies that M is Einsteinian. Now, the statement follows from Corollary 1.

Theorem 10. Let M(2n � 6) be a hyperbolic Keahlerian manifofd. If the
totally real sectional curvatures of hybrid type are bounded in every point, i.e. if

(17) jK(x; a)j � c(p); a ? x; Px;

then M is of constant holomorphic sectional curvature.

Proof. Let u = x + a and fx; a; bg span a totally real 3-dimensional space.

Substituting the pair fx; ag in (17) by f(x+ ta)=
p
1� t2; bg, jtj � 1, we obtain

jR(x+ ta; b; b; x+ ta)j � (1� t2)c(p):



Istotropic sections and curvature properties of hyperbolic Kaehlerian manifolds 191

Therefore, R(u; b; b; u) = 0, and Theorem 5 implies that M is of constant holomor-
phic sectional curvature.

Remark. The totally real curvatures of hybrid type in Theorem 10 can be
replaced by totally real curvatures of pure type.

Theorem 11. Let M(2n � 6) be a hyperbolic Kaelalerian manifold. If the
totally real sectional curvatures are bounded from above, i.e. if

(18)
K(x; a) � c(p); a ? x; Px;

K(x; y) � c(p); x ? y; Py;

then M is of constant holomorphic sectional curvature.

Proof. Let u = y + a and fx; y; ag span a 3-dimensional totally real space.
The �rst condition of (18) implies R(x; a; a; x) � �c(p). Substituting here the

vector a by (a+ ty)=
p
1� t2, jtj < 1, we get R(x; u; u; x) � 0. Using, the inequality

R(x; y; y; x) � c(p) and substituting the vector y by (y + ta)=
p
1� t2, jtj < 1, we

obtain R(x; u; u; x) � 0. Therefore R(x; u; u; x) = 0 and the theorem follows now
from Theorem 5.

5. Plane axioms

LetM (dimM = m � 3) be a di�erentiable manifold with a linear connection
of zero torsion. M is said to satisfy the axiom of r-planes (2 � r < m), if, for each
point p and for any r-dimensional subspace E of TpM , there exists an r-dimensional
totally geodesic submanifold N containing p such that TpN = E.

Theorem 12. (Axiom of nondegenerate totally real 2-planes of hybrid type)
Let M(2n � 6) be a hyperbolic Kaehlerian manifold. If for any nondegenerate
totally real section � in TpM of hybrid type there exists a 2-dimensional totally
geodesic submctnifold N containing p such that TpN = �, then M is of constant
holomorphic sectionai curvature.

Proof. Let fx; y; bg be orthogonal and let it span a 3-dimensional totally real

space in TpM . The pair fx; y0 = (b+ ty)=
p
1� t2g, jtj < 1 spans a 2-plane �, which

is nondegenerate totally real of hybrid type. By the condition of the theorem, it
follows that R(y0; x)x is in a and R(y0; x)x ? y00, where y00 = y + tb. From this, it
follows that R(x; u; u; x) = 0, where u = y + b. Now, the proposition follows from
Theorem 5.

Remark. The nondegerate totally real 2-planes of hybrid type in Theorem 12
can be replaced with nondegenerate totaly real 2-planes of pure type.

Theorem 13. (Axiom of weakly isotropic totally real 2-planes of the I type)
Let M(2n � 6) be a hyperbolic Kaehlerian manifold. If for any weakly isotropic
totally real 2 plane � in TpM of the I type there exists a 2-dimensional totally
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geodesic submanifold N, containing p such that TpN = �, then M has a vanishing
Bochner curvature tensor.

Proof. Let a be an arbitrary weakly isotropic totally real 2-plane of the I type
with a basis f�; xg � ? x; � { eigen. By the condition of the theorem, it follows that
R(�; x)x is in a and therefore, R(�; x; x; �) = 0. Now, the proposition follows from
Theorem 4.

Theorem 14. (Axiom of weakly isotropic totally real 2-planes of the II type)
Let M(2n � 6) be a hyperbolic Kaehlerian manifold. If for every weakly isotropic
totally real 2 plane in TpM of the II type there exists a 2-dimensional totally geodesic
submanifold N containing p such that TpM = �, then M is of constant holomorphic
sectional curvature.

The proof is similar to the proof of Theorem 13 and we omit it.

Theorem 15. (Axiom of strongly isotropic totally real 2-planes of the I
type (II type)) Let M(2n � 8) be a hyperbolic Kaehlerian manifold. If for every
strongly isotropic tolally real 2-plane a in TpM of the I type (II type) there exists
a 2-dimensional totally geodesic submanifolod N containing p such that TpN = �,
then M has a vanishing Bochner curvature tensor.

The proof is similar to the proof of Theorem 13 and it is based on Theorem
6 (Theorem 7).

Theorem 16. (Axiom of nondegenerate holomorphic 2-planes) Let M(2n �
4) be a hyperbolic Kaehlerian manifold. If for erery nondegenerate holomorphic
2-plane � in TpM there exists a 2-dimensional totally geodesic submanifold N con-
taining p surh that TpN = �, then M is of constant holomorphic sectional curvature.

Proof. Let x be arbitrary and a ? x; Px. If � is the holomorphic section
spanned by fx; Pxg, from the condition of the theorem it follows that R(x; Px)Px
is in �. Hence,

(19) R(x; Px; Px; a) = 0:

Substituting the pair fx; ag in (19) by f(x+ ta)=
p
1� t2; (a+ tx)=

p
1� t2g,

jtj < 1, we obtain R(u; Pu; Pu; u) = 0, where u = a + x. Theorem 2 implies
B(R) = 0. By using (19) and formula (8) we �nd

(20) �(x; a) = 0;

Substituting the pair fx; ag as above, we get �(u; u) = 0. Now, from Lemma
3 it follows that (20) implies � = (�=2n)g. This condition and B(R) = 0 give the
proposition.

Theorem 17. (Axiom of strongly isotropic holomorphic 2-planes) Let
M(2n � 4) be a hiperbolic Kaehlerian manifold. If for every strongly isotropic
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holomorphic 2-plane a in TpM of hybrid type there exists a 2-dimensional total-
ly geodesic submanifold N containing p such that TpN = �, then M a vanishing
Bochner currature tensor.
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