PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 38 (52), 1985, pp. 83-85

ON A THEOREM OF ŠUTOV

Sava Krstić

Abstract. This note deals with formulas occurring in Mal'cev's and Šutov's axiomatizations of the class of semigroups embeddable in a group. Assuming α and β are schemes as defined by Mal'cev and $T(\alpha)$, $T(\beta)$ corresponding Mal'cev quasi-identities and $T(\beta, x)$ the Šutov quasi-identity arising from $T(\beta)$ it is proved that there exists a semigroup on which $T(\beta, x)$ is true and $T(\alpha)$ is not whenever α is irreducible and $|\alpha| > |\beta|/2 + 2$.

In a couple of famous articles [1] and [2] Mal'cev considered the problem of embedding a semigroup in a group, found an infinite axiomatization of the class of embeddable semigroups, and proved that this class is not finitely axiomatizable. A similar problem of potential invertibility of elements of semigroups i.e., given a semigroup S and an element a of S, whether S can be embedded in a semigroup in which a has an inverse) was considered by Šutov [3].

Finite sequences of elements ± 1 , ± 2 which satisfy certain properties are called schemes in [1] and for every scheme a an associated quasi-identity $T(\alpha)$ is defined [1, p. 336]. These $T(\alpha)$'s constitute the Mal'cev's aximatization. $T(\alpha)$ is written in variables $a_i, b_i, l_i, r_i, A_j, B_j, L_j, R_j$ where i $i \in \{1, \ldots, p\}$, $j \in \{1, \ldots, q\}$ and pand q are respectively the numbers of occurrences of 1 and 2 in α . Sutov [3] defines $T(\alpha, x)$ to be the quasi-identity obtained from $T(\alpha)$ by replacing all variables l_i, L_i by a new variable x. He showed that an element a of a semigroup S is potentially invertible iff S satisfies all quasi-identities $T(\alpha, a)$. In a subsequent paper [4] Šutov proved that a semigroup is embeddable in a group iff every its element is potentially invertible. As a consequence, the set of all quasi-identities $T(\alpha, x)$ axiomatizes the class of embeddable semigroups. A natural question now is whether this new axiomatization is a substantial refinement of the old one, i.e. whether $T(\alpha, x)$ is a strict consequence of $T(\alpha)$. Sutov proved that in many cases it is indeed so and we quote

THEOREM 8. of [4]. If $\alpha \leq 44$ then $T(\alpha, x) \vdash T(\alpha)$. For every n > 2 there exists a scheme α_n with $|\alpha_n| = 2n$ and $T(\alpha_n, x) \vdash T(\alpha)$.

AMS Subject Classification (1980): Primary 20M10, 08M05.

Here $|\alpha|$ denotes the length of α and $\Sigma \vdash \Theta$ stands for " Θ is true on every semigroup on which Σ is true".

The aim of this note is to prove the following more general

THEOREM. If α und β are schemes and α is irreducible then $T(\beta, x) \vdash T(\alpha)$ implies $|\alpha| \leq |beta|/2 + 2$.

Irreducibility here is as in [2]: a scheme is irreducible if no proper segment of it is itself a scheme. Since it is easy to construct an irreducible scheme of any (even) length the non-trivial part of Šutov's theorem follows from the special case $\alpha = \beta$ of our theorem: if α is irreducible and $|\alpha| > 4$ then $T(\alpha, x)HT(\alpha)$.

We remark that the following proof depends on Lemmas 2 and 3 of [2] and is much shorter than the proof of theorem 8 in [4]. The reader is supposed to have some familiarity with [bf 1] and [2]. We shall make free use of Mal'cev's terminology and will not bother to repeat the definitions. However, a precise reference will be given for every unexplained notion.

Proof. Suppose $T(\beta, x) \vdash T(\alpha)$, $T(\beta, x) = (\sigma_1 \land \cdots \land \sigma_m \Rightarrow \sigma_0)$, and $T(\alpha) = (\psi_1 \land \cdots \land \psi_n \Rightarrow \psi_0)$. Then $|\alpha| = m + 1$ and $|\beta| = n + 1$. Let S_α be the semigroup the generating set of which is the set X of all variables involved in $T(\alpha)$ and the set of defining relations is $\{\psi_1, \ldots, \psi_n\}$. Then $T(\alpha)$ is not true on S_α [2, p. 259) and so $T(\beta, x)$ is not true on S_α either.

For every word u over X there exists a word u_0 in normal form [2, p. 259] such that $u = u_0$ in S_{α} . Therefore, there is a mapping φ which assigns to every variable occurring in $T(\beta, x)$ a word in normal form over X and such that $\sigma_i^{\varphi}, \ldots, sigma_m^{\varphi}$ are true in S_{α} and σ_0^{φ} is not. (Here σ_i^{φ} denotes σ_i with all variables replaced by their φ -values.)

Now every identity σ_i^{φ} is of the form $u_1v_1 = u_2v_2$ with u_j , v_j in normal form. We say that σ_i^{φ} is trivial if u_1u_1 and v_2v_2 are the same words. If σ_i^{φ} is not trivial and i > 0 then it is easy to see that $u_1 = ux_1$, $u_2 = ux_2$, $v_1 = u_1v$, $v_2 = y_2v$ for some $x_1, x_2, y_1, y_2 \in X$ and some (possibly empty) words, u, v over X. Moreover, the identity $\sigma_i = (x_1y_1 = x_2y_2)$ is one of ψ_1, \ldots, ψ_n . Without a loss of generality we may assume σ_i is not trivial for $1 \leq i \leq m' \leq m$ and is trivial for all other (if any) values of i. Thus, $\{\overline{\sigma}_1, \ldots, \overline{\sigma}_{m'}\} \subseteq \{\psi_1, \ldots, \psi_n\}$.

Since σ_0^{φ} is a group consequence [2, p. 253] of the set $\{\sigma_1^{\varphi}, \ldots, \sigma_m^{\varphi}\}$ (as σ_0 is a group consequence of $\{\sigma_1, \ldots, \sigma_m\}$) it follows that σ_0^{φ} is a group consequence of $\{\overline{\sigma}_1, \ldots, \overline{\sigma}_{m'}\}$. From Lemmas 2 and 3 of [2] it follows that all group consequences of a proper subset of $\{\psi_1, \ldots, \psi_n\}$ are simple consequences [2, p. 253]. Not being true in Sa the identity σ_0^{φ} is not a simple consequence of $\{\psi_1, \ldots, \psi_n\}$ and so we get $\{\overline{\sigma}_1, \ldots, \overline{\sigma}_{m'}\} \subseteq \{\psi_1, \ldots, \psi_n\}$.

Let p and q be respectively the numbers of occurrences of 1 and 2 in β . Suppose $p \leq q$; the other case will follow by symmetry. Let $T(\beta) = (\sigma'_1 \wedge \cdots \wedge \sigma'_m \Rightarrow \sigma'_0)$ so that σ_i is obtained from σ'_i by replacing every l_j and L_j by x. From the table defining $T(\beta)$ [1, p. 336] it follows that if L_j occurs in σ_i then it occurs there only as a left factor and that no L_j occurs in σ'_0 . Moreover, since 2, -2 do not

84

On a theorem of Šutov

occur in this order as adjacent element in β it follows that every σ'_i contains at most one occurrence of at most one L_j . Thus, since q is the number of L-variables occurring in $T(\beta)$ there are exactly 2q identities among $\sigma'_1, \ldots, \sigma'_n$ which contain an occurrence of one L-variable. Hence if ξ is the last letter of the word $\varphi(x)$ then ξ occurs as a left factor in exactly 2q identities among $\sigma_1, \ldots, \sigma_m$. Consequently ξ occurs as a left factor in at least 2q - (m - m') identities among $\{\overline{\sigma}_1, \ldots, \overline{\sigma}_{m'}\}$. Since every variable occurs at most twice in $\{\psi_1, \ldots, \psi_n\}$ it follows that among $\overline{\sigma}_1, \ldots, \overline{\sigma}_{m'}$ there are at least 2q + m' - m - 2 redundant (in the sense of repetition) identities. Recalling that every ψ_i $(1 \le i \le n)$ is an element of $\{\overline{\sigma}_1, \ldots, \overline{\sigma}_{m'}\}$ it follows that $m' - (2q + m' - m - 2) \ge n$ and so $n \le m - 2q + 2$. Now $2q \ge p + q = |\beta|/2$ and the desired inequality $|\alpha| \le |\beta|/2 + 2$ immediately follows.

REFERENCES

- A.I. Mal'cev, On the immersion of associative systems in groups (Russian), Mat. Sbornik (N. S) 6(1939), 331-336.
- [2] A.I. Mal'cev, On the immersion of associative systems in groups II (Russian), ibid. 8(1940), 251–264.)
- [3] E.G. Šutov, On potential invertibility of elements of semigroups (Russian), Izv. vuzov, Matematika 53(1966), 153-163.
- [4] E.G. Šutov, Emtedding semigroups in groups and potential invertibility (Russian), Sibir. Mat. Ž. 21(1980), 168-180.

Matematicki Institut Knez Mihailova 35 Beograd, Jugoslavija (Received 02 10 1984)