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EMBEDDING SEMIGROUPS IN GROUPS:

A GEOMETRICAL APPROACH

Sava Krsti�c

Abstract. A way to visualize Mal'cev quasi-identities is presented. As a consequence
an analogy, expressed in a geometric language, is found between Mal'cev and Lambek quasi-
identities. These are known to be of a special form which is called stable here; it is proved
that certain geometrically characterized sets of stable quasi-identities axiomatize the class of
embeddable semigroups. The results of Mal'cev and Lambek are obtained as corollaries. The
method of diagrams, borrowed from group theory, enabled us to give a uni�ed treatment which
seems to be conceptually simpler than those previously employed.

1. Introduction. In order to be embeddable in a group a semigroup has to
satisfy the cancellation laws xz = yz ) x = y and zx = zy ) x = y. That this is
not suÆcient was shown by Mal'cev [9] who also found the �rst set of conditions
which are both necessary and suÆcient [10]. Mal'cev's system contains an in�nity
of formulas generalizing the cancellation laws, each formula being a quasi-identity
(guid, for short), i.e. of the form \a conjuction of identities implies an identity". In
a subsequent paper [11] Mal'cev proved that no �nite set of quids could serve the
same purpose.

After some time another solution in the form of a di�erent in�nite set of quids
was o�ered by Lambek [7]. A feature of Lambek's proof, which contrasts the linear
arguments of Mal'cev, is the usage of polyhedra as geometric means of describing
quids.

For obvious reasons all conditions for embeddability are satis�ed by any
group. In addition to this trivial common property there is a striking simi-
larity between quids comprising Mal'cev's and Lambek's systems. Namely, ev-
ery quid �1 ^ � � � ^ �n ) �0 occurring in either of them involves variables
x1; . . . ; xp; y1; . . . ; yq (for some p; q � 1) so that every �m, ) � m � n, is of the form
xiyj = xkyl; i 6= k; j 6= l, and every x-variable as well as every y-variable occurs
exactly twice in �1 ^ � � � ^ �n ) �0. The quids of this form will be called stable.

In the next section we associate a \diagram" with every stable quid and then
in Section 3 show that the classes of Mal'cev and Lambek quids are distinguished
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in the class of all stable quids by imposing two analogous restrictions on the corre-
sponding diagrams.

Starting from the simple fact that the class of embeddable semigroups is
axiomatizable by quids (Section 4) we prove in Section 6 that each one of certain
six geometrically characterized sets of stable quids axiomatizes the embeddable
semigroups. Two of these sets are considerably smaller than the set of Mal'cev
quids, another two are smaller than the set of Lambek quids, so the embedding
theorems of Mal'cev and Lambek are obtained as corollaries. The technique we use
is the representation by diagrams of the relation \u belongs to the normal closure
of fu1; . . . ; ung in a free group". It is described in Section 5.

A bibliographical note. Chapter 12 of Cli�ord and Preston's book [3] is de-
voted to the embedding problem of semigroups in groups. For a complete account,
history, and references we refer the reader to this book. The simplest exposition
of Mal'cev's proof, as revised by Cohn is tu be found in Section VII.3 of [4]. The
e�orts to visualize Mal'cev quids, originally de�ned in a rather complicated way,
started with Tamari [15]. Rad�o [13] obtained a geometrical characterization similar
to the one given by our Theorem 1. The main reference for geometrical methods in
group theory is Lyndon and Schupp [8, Chapters IIl and V]. A recent application
of diagrams in semigroup theory is given in Remmers [14].

2. Stable quids. In this section we describe a way to visualize stable quids.
With every identity � = (x0y0 = x00y00) we associate a closed (topological) disc
D(�) the boundary of which is subdivided into four edges oriented and labelled as
depicted on Figure 1. The four vertices (i.e. endpoints of edges) of D(�) will be
called the source, sink and switches, according in an obvious way to the orientation
of edges incident with them.

Fig. 1 Fig. 2

Suppose now � = (�1 ^ . . .�n ) �0) is a stable quid. If X is the disjoint
union of D(�0); D(�1); . . . ; D(�n) then it is easy to see that the quotient space
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�

X obtained from X by identifying all pairs of equally labelled oriented edges is a
closed (not necessarily connected) surface. We will say that � is spherical whenever
�

X is a sphere.

The images of edges of discs D(�i) form an oriented graph in
�

X. The sur-

face
�

X together with this graph will be called the diagram associated with �, and
denoted by �(�). (See Section 5 for a general de�nition of diagrams).

Example. Figure 2 presents the diagram associated with the famous condition
Z (or \quotient condition") of Mal'cev [9]

x1y1 = x2y2 ^ x3y1 = x4y2 ^ x3y3 = x4y4 ) x1y3 = x2y4:

From the de�nition of stable quids it follows that if a vertex of some D(�i)
is identi�ed in �(�) with a vertex of D(�j) then the two vertices are of the same
type{sources, sinks, or switches. Therefore, in �(�), edges incident with a vertex
v either all emanate from v or all terminate at v or alternatively emanate and
terminate. We will speak accordingly of sources, sinks, and switches of �(�) and
use also an alternate notation: O-vertices, I-vertices, and W-vertices respectively.

The degree of any switch of �(�) is an even number. We will consider only
stable quids for which the degree of any switch is � 4. This is not a loss of
generality because a switch of degree 2 corresponds to a pair �i; �j of the form
�i = (xy = x0y0), �j = (xy = x00y00) and by deletmg one of �i; �j and replacing the
other by x0y0 = x00y00 we obtain a quid which is trivially equivalent to the orginal
one. Repeating the process we eventually get a quid with no switches of degree 2.

A stable quid � will be called W-minimal if all switches of �(�) have degree
4. Similarly, it is O-minimal (I-minimal) whenever all sources (sinks) have degree
2.

Proposition 1. � is a Lambek quid $ � is spherical and O-minimal.

This is merely an observation. Those who are familiar with the original
de�nition of any Lambek quids (\polyhedral conditions" of [7]) will easily see the
equivalence. Those who are not can take Proposition 1 as de�nition.

Remark. The dual of a stable quid � = (�1^. . .�n ) �0) is the quid obtained
from � by replacing each �i = (xpyq = xrys) by yqxp = ysxr. Clearly the dual
of any O-minimal quid is an I-minimal quid an conversely. Also, the dual of a
W-minimal quid is W-minimal.

3. Mal'cev quids. A considerable amount of notation is necessary to de�ne
what Mal'cev quids are. We �x a set of variablesX = fai; bi; ci; di; Ai; Bi; Ci; Dij i 2
Ng in which quids are to be written. We need also another alphabet Y =
fLi; L�i ; Ri; R

�
i j i 2 Ng. A Mal'cev sequence is a word M = X1X2 . . .X2(p+q),

p; q � 1, in the alphabet Y such that

(m1) The set of letters occurring in M is fL1; L�1; . . . ; Lp; L
�
p; R1; R

�
1; . . . ; Rq; R

�
qg

and the occurrence of Li(Rj) in M precedes the occurrence of L�i (R
�
j ) for every

i 2 f1; . . . ; pg (l 2 f1; . . . ; qg); .
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(m2) If Lk(Rk) occurs between Li and L
�
i (Rj and R�j ) then so does L�k(R

�
k).

The Mal'cev quid qi (M) arising from the Mal'cev sequence M = X1X2 . . .
. . .X2(p+q) is de�ned by

qi (M) =

0
@
2(p+q)�1^

i=1

�(Xi) = �(Xi+1)) �(X2(p+q) = �(X1)

1
A ;

where �(Xi) and �(Xi) are read from the following table.

Xi Li L�I Rj R�j

�(Xi) diai cibi AjDj BjCj

�(Xi) ciai dibi AjCj BjCj

Obviously every Mal'cev quid is stable.

Example. We reproduce from [3, p. 311] an example of a Mal'cev quid. The
wordM = L1L2R1L

�
2R2L3R

�
2L

�
3L1R

�
1 is a Mal'cev sequence; from the table we get

qi (M):

d1a1 = c2a2 ^ d2a2 = A1C1 ^A1D1 = d2b2 ^ c2b2 = A2C2 ^A2D2 = c3a3 ^ d3a3

= B2D2 ^ B2C2 = d3b3 ^ c3b3 = d1b1 ^ c1b1 = B1D1 =) B1C1 = c1a1;

Figure 3 presents �(qi (M)) and shows qi (M) is W-minimal.

Fig. 3

Theorem 1. � is a Mal'cev quid , � is spherical and W-minimal.

Proof. Part 1 (Rightarrow). Let � = qi (M) be a Mal'cev quid as in the
de�nition and � = �(�) the diagram associated with it. Switches of � are the
terminal vertices of edges (labelled by) ai; bi; Cj ; Dj , i.e. the initial vertices of edges
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ci; di; Aj ; Bj . It follows immediately from the table de�ning qi (M) that every
switch is of degree 4. More precisely, there are p + q switches and edges incident
with a switch are either ai; bi; ci; di or Aj ; Bj ; Cj ; Dj for some i or j.

It remains only to prove that � is spherical; we do it by computing the Euler
characteristic. So far we know that � has 4(p+ q) edges, 2(p+ q) regions and p+ q
switches. To prove

jfverticesgj � jfedgesgj+ jfregiousgj = 2

we need to show that the total number of sources and sinks is p+ q + 2.

It suÆces to prove jfsourcesgj = p + 1; jfsinksgj = q + 1 will follow by
symmetry.

The sources of � are initial vertices of edges (labeled by) ci; di; Aj ; Bj . Let
Z = fc1; d1; . . . ; cp; dp; A1; B1; . . . ; Aq; Bqg and let � be the equivalence relation on
Z such that two elements of Z are equivalent i� the corresponding two edges have
the same initial vertex. Obviously, jfsourcesgj = jZ= � j.

The relation � is generated by \the �rst symbol of �(Xi) `�' the �rst symbol
of �(Xi+1)", where i = 1; . . . ; 2(p+ q) and i+ 1 taken modulo 2(p+ q).

Let ML = Y1 . . .Y2p be the word obtained from M by deleting all symbols
Rj ; R

�
j . Let ZL = fc1; d1; . . . ; cp; dpg and let � be the equivalence relation on ZL

generated by \the �rst symbol of �(Yi) " � \the �rst symbol of �(Yi+1)", where
i = 1; . . . ; 2p and i+ 1 taken modulo 2p.

Since �(Rj) and �(Rj) (�(R
�
j ) and �(R

�
j )) have the same �rst symbol it follows

that jZ= � j = jZL= � j. Now for some i the word LiL
�
i occurs as a subword inML.

Therefore di the �rst symbol of both �(Li) and �(L
�
i ), constitutes an equivalence

class in ZL= �. Furthermore, ifM 0
L denotes the word obtained fromML by deleting

Li and L
�
i then jZL= � j = 1 + jZ 0L= � j, where Z

0
L = ZL � fci; dig.

IfM 0 is the sequence obtained fromM by deleting Li; L
�
i thenM

0 is a Mal'cev
sequence and (M 0)L = M 0

L. Since in case ML = L1L
�
1 we have jZL= � j = 2 the

desired equality follows by induction.

Part 2 ((). Assuming � is a spherical W-minimal quid we show that there is
a Mal'cev sequenceM such that qi (M) coincides with � up to renaming variables.
Let � = �(�), p = jfsources of �gj � 1, q = jfsinks of �j � 1. By a simple
computation using Euler formula it follows that there are p+ q switches, 4(p+ q)
edges, and 2(p+q) regions in �. An edge of � will be called an OW-edge or WI-edge
according to the types of vertices incident with it. Two OW-edges (WI-edges) will
be called related if they are incident with the same switch.

Let �O be the graph consisting of all OW-edges and all vertices incident with
them. Then

jfedges of �Ogj � jfvertices of �Ogj = 2(p+ q)� ((p+ q) + (p+ 1)) = q � 1:

Since the degree of any switch of �O is 2 it follows that by removing some q pairs
of related edges of �O we obtain a tree �O. Vertices of T0 are all sources of �
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and some p switches which we denote by l1; . . . ; lp. The remaining q switches we
denote by r1; . . . ; rq . Let TI be the graph consisting of the 2q WI-edges incident
with r1; . . . ; rq together with the vertices incident with them. Then

jfedges of TIgj � jfvertices of TIgj = 2q � (q + jfsinks of TIgj) � �1:

If there is a circuit 
 in TI then the two sources incident with a switch of 
 belong
to di�erent connected components of the complement of 
. Then, since TO is
connected and contains all sources we have TO\TI 6= ;, a contradiction. Therefore,
there are no circuits in TI and so TI is a union of k � 1 trees, where

�k = jfedges of TIgj � jfvertices of TIgj:

Comparing with the inequality above we get k = 1, so T1 is a tree containing all
sinks of �.

Let S be the set of all edges not included in To [ TI . S contains exactly
one pair of related edges incident with any switch. The complement of TO [ TI is
homeomorphic to an open annulus and every edge of S cuts the annulus without
disconnecting it. It follows that there exists a simple closed curve ! contains no
vertices of � and intersects every region in an interval. We subdivide ! into 2(p+q)
edges by 2(p+ q) points, one from each region. Thus every of ! meets exactly one
edge of S. (See Figure 4.)

Fig. 4 Fig.5

The edges of � are labelled by variables involved in �. Now we relabel them
to see � is a Mal'cev quid.

Let � be the subdivision point on ! which belongs to the region D(�0), where
�0 is the consequent identity of the quid �. We traverse ! once in one chosen
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direction starting from �. For any switch l1 there are two WI-edges incident with
l1 which belong to S. The edge �rst met by ! (with respect to the traversing
chosen) we label by ai, the other by bi. The two corresponding edges of ! we
denote respectively by Li and L

�
i ; see Figure 5. Let D1; D2; D3; D4 be the regions

incident with li written in such cyclic order that any two adjacent share an edge
and that traversing Li we pass from D1 to D2.

It easily follows that traversing L�i we pass from D3 to D4. We label the
common edge of D1 and D4D by c1 and the common edges of D2 and D3 by d1.
Similarly we label edges incident with vertices rj by Aj ; Bj ; Cj ; Dj ; see Figure 5.

Writing the 2(p + q) edges of ! in the order we traverse them traversing !
from � we obtain a wordM which clearly satis�es (m1). Since ! wraps once around
TO it follows that component of ! � (Li [ L�i ) contains the edge L�j whenever it

contains Lj . Therefore M is a Mal'cev sequence. � = qi (M) follows immediately
we from the way how we relabeled edges of �.

As an application of Theorem 1 we can easily describe the quids which are
both Mal'cev and Lambek.

Corollry. (Cli�ord and Preston [3, Theorem 12.21]). Let M be a

Mal'cev sequence. Then qi (M) is a Lambek quid if and only if M is of the form

L1 . . .LmRL
�
m . . .L�1Lm+1 . . .LnR

�
1L

�
n . . .L

�
m+1 with n � 1, 0 � m � n.

Proof. Let � = �(�) where � is both Mal'cev and Lambek quid. Then
� is both O- and W-minimal. This immediately forces � to have only two sinks
and the same number n � 1 of sources and switches; see Figure 6. In order
to see which Mal'cev sequences correspond to diagrams of this form notice that
the choice of trees TO and TI is unique up to a cyclic symmetry of the diagram.
Depending on the choice of the region at which one starts traversing the separating
circle !, the method described in the proof of Theorem 1 gives sequences Mm;n =
L1 . . .LmR1 L

�
m . . .L�1 Lm+1 . . .LnR

�
1 L

�
n . . .L

�
m+1. Moreover, by symmetry of the

diagram, the quids qi (Mm;n) and qi (Mm0;n) are obtainable from each other by
renaming variables.
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4. Quids and the embedding problem. The question of �nding necessary
and suÆcient conditions for embeddability of semigroups in groups is the question
of axiomatizing the class of embeddable semigroups. Not being closed under taking
quotients this class fails to be a variety. But it is a quasi-variety, i.e. axiomatizable
by quids. This follows from a general theorem of Mal'cev, see [12, p. 216]. For
reader's convenience we supply below a simple proof of the special case we are
interested in.

We recall that a semigroup identity (or s-identity) is a formula of the form
x1 . . .xm = y1 . . . yn, where xi and yj are variables. A group identity (g-identity)
is a formula of the form x"11 . . .x"mm = y�11 . . . y�nn where "i; �j are integers. An s-

quid (g-quid) is a formula �1 ^ � � � ^ �n ) �0, where �0; �1; . . . ; �n are s-identities
(g-identities).

Suppose now a semigroup S is given by presentation, i.e. the set fxij i 2 Ig of
generators subject to de�ning relations fuj = vj j j 2 Jg. We de�ne G(S) to be the
group with the same presentation. The map xi 7! xi induces a semigroup homo-
morphism � : S ! G(S). It is readily seen that every semigroup homomorphism
from S into a group factors through �. Consequently, S is embeddable in a group
i� � is an embedding.

Proposition 2. A semigroup is embeddable in a group if and only if it

satis�es all s-quids which are satis�ed by any group.

Proof. Necessity is obvious. To prove suÆciency assume S is not embeddable
in any group. Then the homomorphism a above is not an embedding and so there
exist two words u and v in letters fxij i 2 Ig such that u 6= v in S but u = v in
G(S). If F denotes the free group freely generated by xij i 2 Ig then uv�1 belongs
to the normal subgroup of F generated by elements ujv

�1
j , j 2 J . Hence uv�1 is a

product of conjugates in F of Ujv
�1
j , j 2 J0 with J0 � J �nite. Considering xi as

variables it follows that the g-quid

^
j2J0

ujv
�1
j = 1) uv�1 = 1

is true on every group. Thus the s-quid

^
j2J0

uj = vj ) u = v

is true on every group but not on S,

5. Diagrams. We recall that a g-quid � = (u1 = v1 = v1 ^ � � � ^ un =
vn ) u0 = v0) is true on every group i� u0v

�1
1 2 fu1v

�1
1 ; . . . ; unv

�1
n gF where

F is the free group freely generated by the set of variables involved in � and
AF denotes the normal subgroup of F generated by the set A � F . Since the
relation u0 2 fu1; . . . ; ungF can be visualized by means of diagrams (\cancellation
diagrams", "van Kampen diagrams") we devote this section to describing basic



Embedding Semigroups in Groups: A Geometrical Approach 77

facts about diagrams and how they are connected with quids, especially s-quids.
For more details the reader should consult [8, Section V. 1] or [14].

A diagram � is a collection of vertices, edges, and regions, where vertices and
edges form a connected �nite oriented graph �(1) in the 2-sphere and regions are
connected components of the complement of �(1). Thus, edges and regions are
(homeomorphic to) open intervals and open discs respectively. We use the notation
�(e), �(e), e�1 for the initial vertex, the terminal vertex and the inverse edge of
the edge e. A path is word e"11 . . . e"nn , n � 1 where �(e) are edges, "i 2 f�1g and
�(e"ii ) = �(e

"i+1
i+1 ), assuming �(e�1 = �(e) and �(e�1 = �(e). The path above is

positive if "1 = � � � = "n = 1 it is a cycle if �(e"11 ) = �(e"nn ).

The boundary @D of any region D of � consists of vertices and edges incident
with D and is a connected subgraph of �(1). Moreover there is a cycle ÆD which
involves all edges of @D and is such that traversin ÆD D stays all the time on the
same (left or right) side. Such ÆD called a boundary cycle of D; it is unique up to
cyclic permutations and taking inverses.

A labeling '(e) of � amounts to assigning to every edge e of � a variable
'(e) 2 X is a set of variables. Labelling extends multiplicatively to all paths in �,
so that the label of the path e"11 . . . e"nn is '(e1)

"1 . . .'(en)
"n { a group word over

X .

If F is the free group with X a set of free generators then we, may think
of labels of paths in � as being elements of F . The following Propositions show
that labelled diagrams provide a geometrical interpretation of the relation u 2
f�1; . . . ; �ngF .

Proposition 3. Let ' be a labeling of a diagram � and suppose a boundary

cycle ÆD is chosen for every region D of �. Then

'(ÆD) 2 f'(ÆD)jE is a region of �; E 6= DgF

Proposition 4. Let u; v1; . . . ; vn 2 F and u 2 fv1; . . . ; vngF . Then there

exists a diagram �, a region D and a labelling ' of � such that for suitable choices

of boundary cycles

(i) u = '(ÆD) and

(ii) for erery region E 6= D of � '(ÆE) = vi for some i.

The Propositions above are due to van Kampen [6] and are fundamentals of a
powerful method in combinatorial group theory as developed from 1966 by Lyndon,
Schupp, and others. Essentially they are Lemma V.1.2 and Theorem V.1.1 of [8].
The main notational di�erence is that diagrams are planar in [8] while we need
them to be spherical in this work. The two concepts obviously amount to the same
thing by a stereographic projection.

Now, by the remark made in the �rst sentence of this section, Propositions
3 and 4 establish a connection between labelled diagrams and g-quids which are
true on all groups. To interpret s-quids we are led to the following de�nition
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of s-diagrams. Namely, an s-diagram is a diagram in which every region has a
boundary cycle of the form e1 . . . emf

�1
n . . . f�11 , m;n � 1. (We should note that

these diagrams need not be s-diagrams in the sense of [14]; the corresponding
notion in [14] is \two-sided map with all regions two-sided".)

Suppose � is an s-diagram and ' a universal labeling, that is a labeling which
assigns di�erent variables to di�erent edges of �. With every region D of � with
ÆD = e1 . . . ; emf

�1
n . . . f�11 we associate the identity i(D) = ('(e1) . . .'(em) =

'(f1) . . .'(fn)), so that for every region D we have an associated s-quid

qi (�; D) = (
^
E 6=D

i(E)) i(D));

where the conjunction is taken over all regions of � di�erent fromD. By Proposition
3, qi (�; D) is true on every group.

To express the dependence of quids we introduce the following notation. If �
and � are s-quids we write � ` � (� `c �) whenever � is true on every semigroup
(cancellative semigroup) on which � is true.

Proposition 5. If � is an s-guid which is true on every group then there

exists an s-diagram � and a region D of it such that qi (�; D) ` �.

Proof. Let � = (u1 = �1^� � �^un = nun ) u0 = �0). Then by Proposition 4
there is a labeled diagram � and a region D of � such that u0�

�1
0 is the label of ÆD

and for every region E 6= D of � ÆE is labeled by some ui�
�1
i , i 6= 0. Clearly � is

an s-diagram and � is obtained from qi (�; D) by renaming (and possibly equating)
some variables, so � is an obvious consequence of qi (�; D).

Remark. The diagrams �(�) associated in Section 2 with stable quids meet
all requirements to be s-diagrams but one-they need not be spherical. A natural
question of whether a stable quid is true on every group is partially answered by
Proposition 3: it is true if it is spherical. With a bit of additional considerations
one can prove the converse also holds, so a stable quid is true on every group i� it

is spherical.

6. Axiomatizations of the class of embeddable semigroups. If �1 and
�2 are s-diagrams we write �1 ` �2 whenever for every region D of �2 there exists
a region D1 of �1 such that qi (�1; D1) ` qi (�2; D2). Also, �1 `a �2 whenever
both �1 ` �2 and �2 ` �1 hold. �1 `c �2 and �1 `ac �2 are de�ned analogously.

Suppose D is region of an s-diagram � and � a positive path on ÆD. Let �0

be the diagram obtained by subdividing the region D by an edge e connecting the
initial and the terminal vertex of �. �0 is clearly an s-diagram (see Figure 7) and
we have
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Lemma 1. �0 `ac �.

Proof. Let ÆD = �����1 where �; �; �; � are positive paths and �; � possibly
empty. Then in �0 the region D is replaced by two regions D1 and D2 with ÆD1 =
�e�1, ÆD2 = �e���1.

Let E be a region of �0, E 6= D1; D2. Then E is a region of � as well and
we have qi (�; E) = ( ^ lur � ) �) and qi (�0; E) = ( ^ lxr = � ^ x = u) �),
where  is the conjunction of the identities i(D0), D0 6= D1; D2; E, and � = i(E)
and x; u; �; l; r are labels of e; �; �; �; � respectively. The specialization of qi (�0; E)
obtained by replacing every occurrence of the variable x by u is tautologically equiv-
alent with qi (�; E), so qi (�0; E) ` qi (�; E). The converse qi (�0; E) ` qi (�; E) is
also true because lxr = � ^ x = u) lur = �.

For the remaining cases we write qi (�0; D1) = ( ^ lxr = � ) x = u),
qi (�0; D2) = ( ^ x = u ) lxr = �) and qi (�; D) = ( ) lur = �). By the
same kind of argument we have qi (�; D) ` qi (�0; D2) and qi (�; D) `c qi (�0; D1).
Notice that we do not need cancellation if both � and � are empty, so, if e connects
the source vertex of D with the sink vertex of D we have �0 `a �.

Lemma 2. Let � be a source or a sink in an s-diagram � and e1; . . . ; en
(n � 1) all edges incident with �. Let �0 be the diagram obtained by collapsing

some of these edges to the point �. If �0 is an s-diagram then �0 `c �.

Proof. We prove the Lemma assuming � is a sink; the other case follows by
symmetry.

Let xi be the label of ei, 1; . . . ; Dn regions of � incident with � and i(Di) =
(uixi = �ixi+1); i = 1; . . . ; n, where i+1 is taken modulo n and some words ui; �j
are possibly empty.

There is a 1|1 correspondence D $ D0 between regions of � and �0. De�ne
"i = 0 if ei is contracted, otherwise "i = 1. Then i(D0) = i(D) for D 6= D1; . . . ; Dn

and i (D0
i) = (uix

"i
i = �ix

"i+1
i+1 ), i = 1; . . . ; n where x1i = xi and x

0
i = \emty word".

(Notice that the assumption that �0 is an s-diagram implies ui�i�1 6= �ix
"i+1
i+1 )

whenever " = 0.)

Replacing every occurrence of xi in qi (�; D) by x"ii x, where x is a new
variable, we obtain a quid � such that qi (�; D) ` �. The occurrence of i(Di)
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in qi (�; D) corresponds to the occurence of i0(Di) = (uix
"i
i x = �ix

"i+1
i+1 x) in

�. Now i0(Di) and i(D0
i) are equivalent on every cancellative semigroup whence

� `ac qi (�0; D0) and the Lemma follows.

We say that an s-diagram is triangular whenever every its region has a bound-
ary cycle of length 3. The diagram is stable if it is triangular and every its vertex
is either a source a sink, or a switch. An edge of a stable diagram is either an OI-,
OW-, or WI-edge, according to the types of vertices incident with it. Observe that
the three edges incident with any region of a stable diagram are of three di�erent
types and every vertex has even degree which is � 4 in cases the vertex is a source
or a sink. As explained in Section 2, switches of degree 2 are redundant in a sense
and so there is no loss of generality in the assumption that all vertices of a stable
diagram have degree � 4. For X 2 fO, I, Wg we de�ne X-minimal diagrams to be
those in which every X-vertex has degree 4.

If � is a spherical stable quid and �0 = �(�) the corresponding diagram
(Section 2) then the diagram �0 obtained by subdividing every region D of � by an
edge connecting the source vertex with the sink vertex of D is stable. Conversely,
the diagram � obtained from a stable diagram �0 by removing all its OI-edges is
�(�) for some stable quid �. By Lemma 1 we have �0 `a � and so the notions
\stable spherical quid" and \quid of the form qi (�; D) with � stable" coincide.
Also, with the notation as above, � is an X-minimal quid i� �0 is an X-minimal
diagram.

Remark. Let �0 be the diagram obtained from a stable diagram � by reversing
the orientation of every OW-edge. Then (�0)0 = � and �! �0 is a bijection between
the sets of O-minimal and W-minimal quids. In view of the results of Sections 2
and 3 this induces a bijection between the sets of Lambek and Mal'cev quids.

Suppose now � is an s-diagram. For any X;Y 2 fO, I, Wg, X 6= Y we
construct the s-diagram �XY , the XY -subdivision of � in the following way.

l) Subdivide every edge e of � by a new vertex �e 2 e into two (for a moment
non-oriented) edges.

2) For every region D of � take a new vertex �D 2 D. If ÆD =
e1 . . . eme

�1
m+1 . . . . . . e�1m+n then subdivide D into 2(m + n) triangular regions by

2(m + n) edges connecting �D with vertices �e; �, where e; � are incident with D,
so that every new triangular region is incident with one vertex of �, one vertex �e,
and one vertex �D .

3) Orient the diagram just obtained so that every vertex �e is an X-vertex
and every vertex �D is a Y -vertex. (It is easily seen that this can always be done
in a unique way.)

Lemma 3. �XY `c �.

Proof. We prove �WO `c �. Mutatis mutandis the same proof applies to
all other cases. The idea is to describe intermediate diagrams �1;�2;�3 and using
Lemmas 1 and 2 to prove �XO `c �1 `c �3 `c �. The transformation of a region
of � in passing from � via �3;�2;�1 to �WO is shown on Figure 8.
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Fig. 8

Let e+ and e� denote the two edges of �WO obtained by subdivision of the
edge e of �, where e+ is the edge oriented \in accordance" with the orientation of
e. �1 is obtained by contraction of all edges e�. Contracting successively at each
sink of �WO we get �WO `c �1, by Lemma 2.

Now the edges of �WO which connect vertices �D with vertices �e become
multiple edges in �1. Using Lemma 1 we can remove them all obtaining that way
�2 with �1 `a �2.

The vertex set of �2 is the vertex set of � plus vertices �D. Removal of all
vertices �D and all edges incident with them would result in the original diagram
�. Let �0D denote the source vertex of the region D of �. Let �3 be the diagram
obtained by removing all edges emanating from �D but one ending at �0D (for every
D). The removals can be done in succession so that Lemma 1 applies at each stage
and we have �2 `a �3.

Finally, � is obtained by collapsing all edges (\spines") connecting �D with
�0D. Obviously (or by Lemma 2) �3 `a �, �nishing the proof.

If X;Y 2 fO, I, Wg, X 6= Y we de�ne XY -minimal diagrams to be those
stable diagrams which are X-minimal and have the degree of every Y -vertex� 6.
A quid � will be called XY -minimal if � = qi (�; D) for some XY -minimal �.

Theorem 2. X;Y 2 fO, I, Wg, X 6= Y . If � is an s-quid which is true

on every group then there exists an XY -minimal quid �XY such that �XY `c �.
Consequently, the set of all XY -minimal quids together with the cancellation laws

axiomatizes the class of semigroups embeddable in a group.

Proof. Everything has been done for this proof. By Proposition 5 qi (�; D) `
� for some s-diagram �0 and a region D of it. Let � be the diagram obtained by
triangulating every region of �0 by a number of edges emanating from the source
vertex of that region (see Figure 9). Then � ` �0 by Lemma 1. By Lemma 3
�XY `c � and so qi (�XY ; E) `c � for some region E of �XY . Since � is triangular
it follows that qi (�XY ; E) is XY -minimal, completing the proof.

Corollary. (a) (Mal'cev [10], Bush [2]). For every s-quid � which is true

on all groups there exists a Mal'cev quid �M and a Lambek quid �L such that

�M `c � and �L `c �.
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(b) (Mal'cev [10], Lambek [7]). A semigroup is embeddable in a group if and

only if it is cancellative and satis�es either all Mal'cev quids or all Lambek quids.

Remarks. 1. This is to justify the \stable" notation. Suppose � is a triangu-
lar s-diagram. Figure 10 presents what changes one is allowed to perform on two
adjacent regions of � to obtain a new diagram �0 such that �0 `c �. The stable
diagrams are precisely those to which the changes above cannot be applied. More-
over, it can be proved that every triangular diagram in which there are no positive
cycles can be transformed by a �nite number or such to a stable diagram.

2. Every semigroup S can be canonically embedded in a monoid (semigroup
with identity) S1 so that S is embeddable in a group i� S1 is. Thus the embedding
problem for semigroups is very close to that for monoids. It can be proved that
a set of stable quids axiomatizes the class of embeddable monoids i� the same set
with the cancellation laws added axiomatizes the class of embeddable semigroups.

3. As we have already mentioned, the class of emheddable semigroups is not
�nitely axiomatizable. This brings importance to the task of �nding simple criteria
which guarantee embeddability. An example is the embedding theorem of Adjan
[1] for semigroups given by certain presentations; a transparent proof is given hy
Remmers [14].

Another well-known example is the theorem of Doss [5] which asserts the
embeddability of semigroups satisfying a certain �rst-order property (left quasi-
regular semigroups). Doss's result generalizes some previously known criteria and
is proved by checking that all Mal'cev quids are true on the semigroups in question.
We note here that it is possible to give a geometrical variant of the proof in [5]
which is much less computational.
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