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ON SOME RADICALS IN NEAR-RINGS WITH A DEFECT

OF DISTRIBUTIVITY

Vu�ci�c Da�si�c

Abstract. We consider some properties of the radical J2(R) and the Levitzki radical L(R)
in a near-ring R with a defect of distributivity. With and additional assumption that the defect
D of R is nilpotent or D is contained in the commutator subgroup of (R;+) we generalize some
results of Freidman [6, Theorems 1, 2], and of Beidleman [1, Th. 16]. Also, we give a slight version
of the Theorem 2.5 of [3]. By using the notation of a relative defect, we consider some properties
of minimal nonnilpotent R-subgroups and we generalize some results of Beidleman [2, Theorems
2.4, 2.6, 2.7, 3.1].

1. Preliminaries

A left zero-symmetric near-ring R is a set with two binary operations + and
� such that

(1Æ) (R;+) is a group (not necessarily abelian)

(2Æ) (R; �) is a semigroup

(3Æ) The left distributivity law holds, i.e.

x(y + z) = xy + xz; for all x; y; z 2 R:

Also we suppose 0x = 0 for all x 2 R.

Let R be a near-ring and let (S; �) be a multiplicative subsemigroup of (R; �)
whose elements generate (R;+). We say that S is a set of generators of the near-
ring R. Thus, every element r 2 R can be represented as a �nite sum

P
i
(�si),

(si 2 S). Denote by D = D(S) the normal subgroup of the group (R;+) generated
by the set fd : d = �(xs + yx) + (x + y)s; x; y 2 R; s 2 Sg. It was proved in
[4] that D is an ideal of R. If S � R is a proper subset of R, then we say that
R is a near-ring with the defect of distributivity D. If we wish to stress the set of
generators, then we write (R;S). Thus, in the near-ring (R;S) with the defect D,
for all x; y 2 R and s 2 S there exists d 2 D such that (x + y)s = xs + ys + d.
Specially, if D = f0g then R is a distributively generated (briey d.g.) near-ring. If
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S = R, then we say that R is a D-distributive near-ring and then for all x; y; z 2 R
there exists d 2 D such that (x+ y)z = xz + yz + d. Specially, if D = f0g then R
is a distributive near-ring.

A right idealK of R is a normal subgroup of (R;+) such that (x+a)y�xy 2 K
for all a 2 K, x; y 2 R. An ideal H of R such that ra 2 H for all a 2 H , r 2 R.
An R-subgroup B of R is subgroup (R;+) such that br 2 B for all b 2 B, r 2 R.

Let A be a nonempty subset of R and let A0 be the normal subgroup of (R;+)
generated by A. The normal subgroup Dr(A) of (R;+) generated by the elements
of the form

d = �(xs+ a0s) + (x+ a0)s; (x 2 R; a0 2 A0; s 2 S)

is called the relative defect of the subset A with respect to R. In [5] it was proved
that the relative defect Dr(A) of some ideal A of R is an ideal of R too.

2. Some properties of the radical J2(R) and the Levitzki radical

A right ideal B of a near-ring R is called modular (strictly maximal) if B is
maximal as an R-subgroup. Let I denote the colletion of all modular right ideals
of R. We de�ne the radical J2(R) of R by radical J2(R) of R by J2(R) =

T
B2I

B.
The radical subgroup Rs(R) of R is the intersection of all maximal R-subgroup of
R.

In a zeror-symmetric near-ring R every right ideal is an R-subgroup, hence
a subnear-ring. We recall that a near-ring R is locally nilpotent if for every �nite
subset H of R there exists a positive integer n = n(H) such that the product of
every n elements from H is zero. An ideal of R is locally nilpotent if it is locally
nilpotent as a near-ring ideals of R is called the Levitzki radical L(R) of R.

The following two results generalize respectively theorems 1 and 2 of [6].
Namely, we extend these results of Friedman about distributive near-rings to a
wider class of D-distributive near-rings. In addition we only require that the defect
D is nilpotent (Th. 2.1) and that the defect D is contained in the commutator
subgroup of R (Th. 2.2).

Theorem 2.1. Let A be an ideal of a D-distributive near-ring R with a
nilpotent defect D: Then the Levitzki radical L(A) of A is a locally nilpotent ideal
of R and L(A) = L(R) \ A.

Proof. The relative defect Dr(A) of an ideal A is an ideal of R too, and
it is contained in the defect D [5, Th. 4]. Thus, Dr(A) is nilpotent. Hence,
Dr(A) � L(A), i.e. D(A) � Dr(A) � L(A), where D(A) is the defect of the ideal
A, considering A as a near-ring. By Proposition 5 of [5], A=L(A) is a distributive
near-ring and has no non-zero locally nilpotent ideals. Using Lemma 3 in [6], it
follows that L(A) is a locally nilpotent ideal of R. Thus, L(A) � L(R) \ A. Also,
L(R) \ A is a locally nilpotent ideal of A. Consequently L(R) \ A � L(A) i.e.
L(R) \ A = L(A).

Theorem 2.2. Let R be a D-dislributive near-ring with a nilpotent defect
D which is contained in the commutator subgroup R0 of (R;+). Then the factor
near-ring R=L(R) is a ring, where L(R) is the Levitzki radical of R.
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Proof. Since D is a nilpotent ideal of R we have D � L(R). Thus, by
Proposition 5 ot [5], R=L(R) is distributive. On the other hand, by Theorem 2 of
[5], R0 is a nilpotent ideal of R, i.e. R0 � L(R). Therefore, R=L(R) is an abelian
group with respect to addition; thus R=L(R) is a ring.

An ideal B of a near-ring R is called strictly small if and only if R = C for
each R-subgroup C such that R = B+C. The following result generalizes Theorem
16 of [1]. Namely, we extend this result of Beidleman about d.g. near-rings to a
wider class of near-rings with a defect of distributivity. In this goal we only require
that the defect D is contained in the commutator subgroup of R.

Theorem 2.3. Let R be a near-ring whose defect D is contained in the com-
mutator subgroup R0 of (R;+). If (R;+) is a �nitely generated nilpotent group,
then the radical J2(R) is a strictly small ideal.

Proof. In view of Theorem 6 [1], we need to show that J2(R) =
T

B2I0 B,
where I 0 is the set of maximal R-subgroups. Thus it suÆces to show that every
maximal R-subgroup of R is right ideal of R too. Let B be a maximal R-subgroup
of R. Since (R;+) is �nitely generated, it follows that there exists a maximal
sugroup B1 of (R;+), B �1B,. By Corollary 10. 3.2. of [7] it follows that B1 is a
proper normal subgroup of (R;+) and R0 � B,and so D � B1. If B2 the normal
subgroup of (R;+) generated by the set B, then it is easy to show that B2 +D is
a right ideal of R and B � B2 +D 6= R. Since B is maximal R-subgroup of R, it
follows that B = B2 +D, whence B is a right ideal of R.

We now give a slightly modi�ed version of some earlier results [3, Corollary
to Th. 2.5]. We say that B is a small normal subgroup of (R;+) if and only if
R = C for each normal subgroup C of (R;+) such that (R;+) = (B;+) + (C;+).

Theorem 2.4. Let R be a near-ring whose defect D is a small normal subgroup
of (R;+). If (R;+) is a nilpotent group and R has the identity, then J2(R) =
Rs(R).

Proof. Obviously Rs(R) � J2(R). We need to show that J2(R) � Rs(R). Let
B be a maximal R-subgroup. It is well known [9, Th. 6.4.10.] that B is a term of
a normal series for (R;+). Thus, B is contained in a proper normal subgroup C of
(R;+). But, C+D is a normal subgroup of (R;+) and C+D 6= R, because C 6= R
and D is a small normal subgroup of (R;+). Thus, there exists a proper normal
subgroup C + D of (R;+) containing B and D. Therefore, the normal subgroup
B1, of (R;+) generated by the set B is contained in C + D, so B1 + D 6= R. It
is easy to see that B1 +D is a right ideal of R which contains the R-subgroup B.
Since B is a maximal R-subgroup, it follows that B = B1 + D, i.e. B is a right
ideal of R. Thus, every R-subgroup is a right ideal of R.

Corollary. Let R be a near-ring whose defect D is a small normal subgroup
of (R;+). If (R;+) is a nilpotent group and R has the identity, then the radical
J2(R) is a quasi-regular ideal of R.
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Throughout this section we shall assume that R satis�es the descending chain
condition on R-subgroups, R has the identity and the radical J2(R) is a nilpotent
ideal.

An R-subgroup B of a near-ring R is called minimal nonnilpotent if B is
nonnilpotent and every proper R-subgroup in B is nilpotent. A proper right ideal
B of R is said to be complemented in R if there exists an R-subgroup H of R such
that R = B +H and B \H = f0g.

We �rst need the following

Proposition 3.1. Let B be an R-subgroup and let A be a right ideal of R. If
the relative defect of the subset B is contained in B, then B \ A is a right ideal of
R.

Proof. We have only to show that the relative defect of the subset b \ A is
contained in B \A. By de�nition of the relative defect, Dr(B \A) is generated by
all elements d in R for which there exist x 2 R, s 2 S and b 2 B \ A such that
d = �bs� xs+ (x + b)s. Since Dr(B) � B, it follows that d 2 B. By Lemma 2.3.
of [4], we have d 2 A, because A is a right ideal of R. Thus, for all d 2 Dr(B \A),
it follows that d 2 B \A, i.e. Dr(B \A) � B \A. Therefore by Lemma 3.2. of [4],
we have that B \ A is a right ideal of R.

The following results are generalizations of some results of Beidleman [2,
Theorems 2.4, 2.6, 3.1]. The results of Beidleman refer to a class of d.g. near-
rings. We transmit these results over a wider class of near-rings with a defect
of distributivity. Here we only impose an additional condition of the form: every
minimal nonnilpotent R-subgroup contains the relative defect of its own (Theorems
3.2, 3.3.), or every nonnilpotent R-subgroup contains the relative defect of its own
(Theorems 3.4, 3.5).

Theorem 3.2. Let R be a near-ring with a defect of distributivity and let
every minimal nonnilpotent R-subgroup of a near-ring R contain the relative defect
of its own. If B is a minimal nonnilpotent R-subgroup of R, then B \ J2(R) is the
unique strictly maximal right ideal of B.

Proof. From Proposition 3.1. it follows that B \ J2(R) is an ideal of B. The
proof of the remaining part is the same as that of Theorem 2.4. of [2].

Theorem 3.3. Let R be a near-ring with a defect of distributivity and let
every minimal nonnilpotent R-subgroup of R contain the relative defect of its own.
Further, let f : R ! R2 denote the natural near-ring homomorphism of the near-
ring R onto the near-ring R2 = R=J2(R). If B is a minimal nonnilpotent R-
subgroup of R, then (B)f is a minimal R2 subgroup of R2.

Proof. By the First isomorphism theorem we have

(B + J2(R))=J2(R) ' B=B \ J2(R):

On the other hand (B)f = (B + J2(R))f = (B + J2(R))=J2(R).
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From Theorem 3.2. it follows that B \ J2(R) is a strictly maximal ideal of
B. Thus, (B)f is a minimal R-subgroup of the R-group R2, i.e. (B)f is a minimal
R2-subgroup of R2.

Theorem 3.4. Let R be a near-ring with a defect of distributivity and let every
nonnilpotent R-subgroup of R contains the relative defect of its own. A nonnilpotent
R-subgroup B of R is minimal nonnilpotent if and only if B contains no proper
nonzero normal R-subgroups which are complemented in B.

Proof. Assume that B is a minimal nonnilpotent R-subgrup. Let B1 be
a proper nonzero normal R-subgroup of B that is complemented in B by an R-
subgroup B2 � B. From de�nition of a minimal nonnilpotent R-subgroup, it
follows that the R-subgroups B1 and B2 are nilpotent. The radical J2(R) contains
all nilpotent R-subgroups [8, Corollary 5.45]. Since J2(R) nilpotent, we have that
B = B1+B2 is nilpotent whih contradicts the assumption above. Conversely, let a
nonnilpotent R-subgroup B contains no proper nonzero normal R-subgroups that
are complemented in B. We assume that there exists a minimal nonnilpotent R-
subgroup C which is contained in B and we seek a contradiction to this assumption.
Namely, by using Theorem 3.51 of [8], C contains an idempotent c such that cR = C
and R = cR+A(c), A(c) = fr : cr = 0; r 2 Rg. Hence, B = cR+A(c) \B. Since
A(c) is a right ideal of R, it follows that A(c) \ B is a normal R-subgroup of the
R-group B. From Proposition 3.1. we have that A(c) \B is a right ideal of R, i.e.
A(c) \B is a right ideal of B. The proof of the remaining part is the same as that
of the Theorem 2.7 in [2].

Theorem 3.5. Let R be a near-ring with a defect of distributivity and let
every nonnilpotent R-subgroup of R contains the relative defect of its own. Further,
let R2 = R=J2(R) be a ring and let b be an idempotent of R. Then B = bR =
cR + A(c) \ B, where c is an idempotent element of R contained in B. Moreover,
the R-subgroup A(c)\B is nilpotent if and only if, b2R2b2 is a division ring, where
b2 = (b)f (f is the natural near-ring homomorphism of R onto R2).

Proof. The proof is the same as that of Theorem 3 of [2], whereby we use as
jet the result of the Proposition 3.1 and the result of the Theorem 3.4.

The author is indebted to Professor V. Peri�c for some helpful comments.
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