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COMMUTATIVE WEAK GENERALIZED INVERSES OF A

SQUARE MATRIX AND SOME RELATED MATRIX EQUATIONS

Jovan D. Ke�cki�c

Abstract. The chief concern of this paper is the existence and the construction of all weak
generalized inverses which commute with the original matrix; in other words we are concerned
with the system AXA = A; AX = XA. Some other matrix systems and equations are also
considered.

1. The (unique) generalized inverse of an arbitrary m� n complex matrix A
is de�ned (see [1]) as the n�m matrix A+ which satis�es the conditions:

(1) AA+A = A; A+AA+ = A+; AA+ and A+A are Hermitian:

However, in various applications (particularly in solving linear matrix equations) it
is not necessary to use the generalized inverse A+. Instead, it is enough to take a
matrix which satis�es only the �rst of the conditions (1), i.e. a matrix A such that

(2) AAA = A:

We note in passing that Bjerhammar [2] de�ned by the �rst equality of (1) the
generalized inverses, and by the �rst two equalities of (1) the reciprocal inverses of
the given matrix A.

A matrix A satisfying (2) will be called here a weak generalized inverse of
A (w.g.i. of A). Unless A is a regular matrix (in which case the only w.g.i. is the
inverse A�1), any matrix A has an in�nity of w.g.i.'s. We shall �rst investigate
whether among them there exists a w.g.i. A which commutes with A, i.e. whether
there exists a matrix A which satis�es (2) and also

(3) AA = AA:

Notice that possible commutative reciprocal inverses of A, i.e. solutions of the
system

AXA = A; XAX = X; AX = XA
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were considered e.g. in [3] or [4].

We shall characterize commutative w.g.i.'s, and more generally solutions of
the system in X :

AXA = A; AkX = XAk (k 2 N)

by means of the coeÆcients of the minimal polynomial of A. Such an approach was
not, as far as we know, employed before.

The existence of a commutative w.g.i. facilitates certain problems. For in-
stance, in that case a w.g.i. of An is A

n
(n 2 N); the equations AnX = 0 and

AX = 0 are equivalent for all n 2 N ; equalities of the form AmY = AnZ can be
canceled by A (m;n integers > 1), and so on.

Naturally, the search for commutative w.g.i.'s restricts us to square matrices.
We also exclude from our considerations regular matrices.

2. Suppose that A is a singular square matrix. We may take that the minimal
polynomial of A has the form

(4) m(�) = �n + �n�1�
n�1 + � � �+ �1�

since the existence of the constant term �0 6= 0 would imply that A is regular.

Theorem 1. The matrix A with the minimal polynomial (4) has a commu-
tative w.g.i. if and only if �1 6= 0.

Proof. If �1 6= 0, it is easily veri�ed that the matrix A de�ned by

A = �(1=�1)(A
n�2 + �n�1A

n�3 + � � �+ �2I)

is a commutative w.g.i. of A.

Conversely, suppose that A is a commutative w.g.i. of A and that �1 = 0.
Then from the equality

An + �n�1A
n�1 + � � �+ �2A

2 = 0:

after multiplying by A, and noting that AAk = Ak�1 (k = 2; 3; . . . ) follows

An�1 + �n�1A
n�2 + � � �+ �2A = 0;

implying that (4) is not the minimal polynomial of A. This completes the proof.

As a direct consequence of the above theorem we obtain

Theorem 2. If A is a commutative w.g.i. of A, then there exist a commutative
w.g.i. A0 and a polynomial P such that A0 = P (A).

Proof. If A is a commutative w.g.i. of A, then the minimal polynomial of A
has the form (4), with �1 6= 0. But then the polynomial P (�) = ���11 (�n�2 +

�n�1�
n�3 + � � �+ �2) is such that A0 = P (A) is a commutative w.g.i. of A.
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The above theorem suggests the question: If A is a commutative w.g.i. of A,
does there exist a polynomial P such that A = P (A)? The answer is negative.
Indeed, the matrix

A =
1

9














4 4 �5
�2 �2 7
1 1 1














is a commutative w.g.i. of

A =














1 1 1
1 1 1
1 1 1














but it cannot be expressed in the form of a polynomial in A. In fact, since A2 = 3A,
any polynomial in A can be reduced to a polynomial of the form �A + �I . But
then it easily veri�ed that there are no � and � such that A = �A + �I .

At the end of this section we deduce a formula which enables us to write down
all commutative w.g.i.'s of a given matrix, provided that one of them is known.

Theorem 3. Suppose that A is a commutative w.g.i. of A. Then all the
solutions of the system in X:

(5) AXA = A; AX = XA

are given by

(6) X = AAA+ T �AAT � TAA+AATAA;

where T is an arbitrary matrix.

Proof. The proof is based on the fact that the general solutions of the equa-
tions in X:

AXA = A; AXB = 0

are given by

X = AAA+ U �AAUAA; X = U �AAUBB;

respectively, where A;B are w.g.i's of A and B, and U is an arbitrary matrix.

In order to solve (5), we substitute the general solution

(7) X = AAA+ U �AAUAA

where U is arbitrary, of the �rst equation into the second equation of the system,
to obtain the following equation in U :

(8) AU �AUAA = UA�AAUA:

The equation (8), when multiplied by A from the right becomes

UA2 �AAUA2 = 0;
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and again multiplying by A we obtain

UA�AAUA = 0; i.e.; (I �AA)UA = 0;

and since I is a w.g.i. of I � AA, its general solution is

(9) U = V � (I �AA)V AA;

where V is an arbitrary matrix. We now substitute (9) into (8), to obtain the
following equation in V :

AV �AV AA = 0;

i.e.
AV (I �AA) = 0:

The general solution of the last equation is

(10) V = T �AAT (I �AA);

where T is an arbitrary matrix. From (7), (9) and (10) we conclude that (5) implies
(6). Conversely, it is easily veri�ed that (6) is a solution of (5), and the proof is
complete.

3. As we have seen, a matrix A need not have a commutative w.g.i. We
therefore investigate whether for a given matrix A it is possible to �nd a matrix X
which satis�es the weaker conditions:

(11) AXA = A; AkX = XAk;

for some k > 1. Such matrices are called k-commutative w.g.i.'s of A (of course,
we suppose that k is the smallest positive integer such that (11) holds). Note that
systems of the form

AXA = A; XAX = X; AkX = XAk; AXk = XkA

were considered by Erdelyi [5].

As before, we suppose that

(12) �n + �n�1�
n�1 + � � �+ �1�

is the minimal polynomial of A.

Theorem 4. If the matrix A has a k-commutative w.g.i. then at least one of
the coeÆcients �1; . . . ; �k di�ers from zero.

Proof. The proof is similar to the proof of Theorem 1. Namely, suppose that
�1 = � � � = �k = 0, so that

(13) An + �n�1A
n�1 + � � �+ �k+1A

k+1 = 0:

If there exists a matrix X which satis�es (11), then multiplying (13) by X , and
noting that from (11) follows XAm = Am�1 for m � k+1, we see that (13) reduces
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to An�1 + �n�1A
n�2 + � � � + �k+1A

k = 0, implying that (11) is not the minimal
polynomial of A.

Theorem 5. Suppose that k is the smallest positive integer (1 � k � n � 1)
such that �k 6= 0. Then there exists a k-commutative w.g.i. of A.

Proof. Since the minimal polynomial of A is

�n + �n�1�
n�1 + � � �+ �k�

k (�k 6= 0);

the matrix A is similar to a Jordan matrix J , which can be written in the form
J = T � R, where T is a Jordan matrix of order � k, with zeros on the diagonal,
and R is a regular matrix. Moreover, T k = 0, and so Jk = 0�Rk

Therefore, if T is a w.g.i. of T , then J = TU � R�1 is a w.g.i. of J , and J
commutes with Jk since

JkJ = (0�Rk)(T �R�1) = 0�Rk�1 = JJk:

Now since A is similar to J , there exists a regular matrix S such that A =
SJS�1. But then the matrix X de�ned by X = SJS�1 satis�es both equations
(11), which is easily veri�ed.

From Theorems 4 and 5 we obtain

Theorem 6. Let 1 � k � n� 1 and suppose that �1 = � � �+ �k�1 = 0. Then
the matrix A has a k-commutative w.g.i. if and only if �k 6= 0.

Again, we can deduce a formula which gives all k-commutative w.g.i.'s of A,
provided that one of them is known.

Theorem 7. If A is a k-commutative w.g.i. of A, then all the solutions of
the system (11) are given by

(14) X = AAA+ T � TAkA
k
+AATAkA

k
�A

k
AkT +A

k
AkTAA�AATAA:

where T is an arbitrary matrix.

Proof. The proof is similar to the proof of Theorem 3, and we therefore omit

it. It should only be noted that from AAA = A, AkA = AAk follows that A
k
is a

w.g.i. of Ak.

Remark. For k = 1 formula (14) reduces to formula (6).

4. Notice that Theorems 3 and 7 can be carried over to arbitrary rings.
Indeed, if (R;+; �) is a ring, and if a is a solution of the system in x:

axa = a; akx = xak (k 2 N; a 2 R �xed);

then all the solutions of that system are given by

x = aaa+ t� takak + aatakak � akakt+ akaktaa� aataa;
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where t 2 R is arbitrary.

5. Commutative and k-commutative w.g.i.'s can be used to solve various
matrix equations. As an example we consider the equation in X :

(15) AmXAn = cAp;

where m;n are nonnegative integers, p is a positive integer, and c is a complex
number. If A is a commutative w.g.i. of A, then the general solution of the equation
(15) is given by

(16) X = cA
m
ApA

n
+ T �A

m
TAnA

n
;

where T is an arbitrary matrix.

However, if A does not have a commutative w.g.i., but only a k-commutative
w.g.i. (k > 1), then the equation (15) can be solved by this method provided that
one of the following conditions is ful�lled:

(i) k � min(m;n; p);

(ii) k � min(m; p) n 2 f0; 1g;

(iii) k � min(n; p); m 2 f0; 1g;

(iv) k � p m; n 2 f0; 1g,

and the general solution of (15) in all those cases is again (16).

The equation (15) can be treated analogously in an arbitrary ring, provided
that c is an integer.
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