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ON THE MINIMAL DISTANCE OF THE ZEROS
OF A POLYNOMIAL

Slavisa B. Presié

1. Let
n
(1) p(l‘) = Zaulya (au €eC, ay 7é 0)
v=0
be a complex polynominal whose zeros x1,...,z, are mutually distinct. In this

paper we give a method of finding some positive lower bounds of

2 i —
(2) rgél?mz 'TJ|

2. In the sequel we shall use some well known facts about polynomials. Let
p(z) = ap + --- + a,x™ (a, # 0) be any complex polynomial. There are many
known formulas ([1], [2]) of the type

(3) iz <M (i=1,...,n)

where w1, ..., z, are all zeros of p(z) and M is a positive constant. So, a classical
result due to Cauchy [1] is

| < .
(4) ol < 1+ ma (jaul/Jaa)

We emphasize that in this case, and the same is almost ever, M has the following
poroperty

(5) M is an increasing function in each |ao|/|an|,- .., |an—1|/|0n]|
Let, further, besides p(z)
pr(x) =bo+ -+ bpa™, (b, #0)
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be another complex polynomial. Then there is a polynomial of the form

(6) r(z) =co+ +cporz™ !

such that the equality

(7) pi(zi) = r(z)

holds for every zero x; of the polynomial p(z). In other words we have the following
relation

pi(x) =r(x) ( mod p(z))
There are at least two methods of finding 7(z): by the division algorithm or by
applying, enough number of times, the substitution

" = —a;l(ao +arx+ - Fan_™h).

Note that for r(z) we shall also use the notation r(p; (z), p(z)).

Suppose now that we would like to have a polynomial r(z) of the form (6)
such that the equality

(8) 1/pi(zi) = r(z;)

holds for every zero x; of p(z). Generally such a polynomial r(z) does not exist.
It exists just in the case the polynomials p(z) and {(x) have no common zero, i.e.
they are relatively prime polynomials. Then r(z) can be found by the Euclidean
algorithm, for example. Namely, in such a way we can find two polynomials e; (),
e2(x) such that the identity

e1(z)p(z) + ex(x)p1(z) =1

holds. Hence we have the equality 1/p;(z;) = e2(x;) and consequently for r(z)
we may take the polynomial r(es(z),p(x)). Note that for the obtained r(z), i.e.
r(e2(x),p(z)) we shall also use the notation as before: r(1/pi(z),p(z)). More
generally, if a(z)/b(x) is any rational function, where b(z) and p(z) are relatively
prime polynomials, then by r(a(z)/b(z), p(z)) will be denoted a polynomial of the
form (6) such that the equality a(z;)/b(z;) = r(z;) holds for every zero z; of the
polynomial p(z). Obviously the polynomial r(z) a unique.

Ezxample 1. Let
(9) p(z) =2%/3 — 2% + 22+ 1/3, pi(z) = 2% — 22+ 2.
Then using the Euclidean algorithm we obtain the following polynomial equalities
p(z) = p1(z)(z —1)/3+ (22 + 3)/3), pi(x) =22z +3)/3-(3z/2—21/4)+29/4
from which on eliminating the polynomial (22 + 3)/3 we infer the equality

p(z)(—6x +42)/29 + p1 (z)(22% — 9z + 11)/29 =1



On the minimal distance of the zeros of a polynomial 37

Thus we see that

(10) r(1/p1(z),p(z)) = (22 — 9z + 11)/29

3. Now we are going to describe, step by step, a method of finding a lower
bound of (2) for a given polynomial (1).

Firstly, we begin with the Taylor formula

/ n (m) (xl)
p(z) = p(z;) + (z — zi)p'(zi) + -+ + (z — ) —a
where i € {1,...,n} is fixed. Hence we conclude that the following equation in d
V@) | P @)
11 dnfl_ ! i dn72_ " i dp 7 o
(11) Pl + a7ty e+ d - Lo o+ BT =0
has the zeros (z1 —x;) ™, ..., (zio1 — ) Y (mip1 —z) L, o, (0 — 2) L

Secondly, let

(12)  M(p™ (@)l (@), P77 (@) [ (n = D' (@), -, [p" () 219 (23)])

be any increasing (in the sense of (5)) upper bound of the moduli of the zeros of
the equation (11). Thus, we have the inequality

|z — i < M(Ip™ (@3) /nlp! ()], p D (i) [ (n = DI (23)], -
(13) e [P ()2 ()
Thirdly, suppose that a constant A > 0 is an upper bound of |z;| (i =
1,...,n).
Fourthly, suppose that we have determined the following polynomials
r(p™ (@) /nlp' (), rE"V(@)/(n =) (@), ..., r(@" (@) /2 ()

which exist since p(z) has mutually distinct zeros. Denote these polynomials by
T (Z), rn_1(z),...,r2(x)

respectively.

For any polynomial f(z) = fo + fiz + ..., +fs2® let |f|(z) denote the poly-
nomial fo| + |filz + -+ |fs|2®.

Fifthly, using the monotony of M and the inequalities |z;] < A from (13) it
follows that

|2 = i > (M(|rnl(A), el (4), ., 2| () ™1 (@ #4)

which yields our final result.
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THEOREM. The minimal distance of the zeros of the polynomial (1) satisfies
the inequality

(14) min j2j = i) > (M(Irnl(A), [rn-1](4),., Ir2] (4))) "

Ezample 2. Let p(x) be the polynomial considered in Example 1. Then we
have the following equalities

p(z) =pi(x), p'(z)=20-2, p"(x)=2
As we have already established we have the equality (see (10))
(15) r(1/p' (z), p(x)) = (2% — 9z + 11)/29

In the next step we should decide which the M-formula to use. Let us take the
Cauchy’s one. So, according to (13) we have the following inequality

= il < 1+ max((p” (5)/20(z0) ], |6 (2:) /68 (1))
i.e. the inequality
|z — x|t < 14+ max(|z; — /27 — 22; + 2, |1/3(2F — 2z; + 2)|)

Using (15) it is easily seen that

1 222 — 9z + 11
= d
R P 59 ( mod p(x)),
z—1 —5z2 + 8z — 13
2 —2¢+2 = 29 (- mod p())

Thus the inequality of the type (14) reads

. 242 +94+ 11 54%2+94 +13
(17) r?;e‘?'”““] zil < 1/ (1 +max ( 29 ’ 29 >>

where A is an upper bound of |z |, |z2|, |z3|. For instance, using the Cauchy formula
(4) we conclude that

min |z; — x;| > 29/350.
i#]
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