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ON THE MINIMAL DISTANCE OF THE ZEROS

OF A POLYNOMIAL

Slavi�sa B. Pre�si�c

1. Let

(1) p(x) =

nX
�=0

a�x
� ; (a� 2 C; an 6= 0)

be a complex polynominal whose zeros x1; . . . ; xn are mutually distinct. In this
paper we give a method of �nding some positive lower bounds of

(2) min
i6=j

jxi � xj j:

2. In the sequel we shall use some well known facts about polynomials. Let
p(x) = a0 + � � � + anx

n (an 6= 0) be any complex polynomial. There are many
known formulas ([1], [2]) of the type

(3) jxij �M (i = 1; . . . ; n)

where x1; . . . ; xn are all zeros of p(x) and M is a positive constant. So, a classical
result due to Cauchy [1] is

(4) jxij � 1 + max
1�i<n

(jaij=janj)

We emphasize that in this case, and the same is almost ever, M has the following
poroperty

(5) M is an increasing function in each ja0j=janj; . . . ; jan�1j=janj

Let, further, besides p(x)

p1(x) = b0 + � � �+ bmx
m; (bm 6= 0)

AMS Subject Classi�cation (1980): Primary 12D10, 26C10, 30C15.



36 S. Pre�si�c

be another complex polynomial. Then there is a polynomial of the form

(6) r(x) = c0 + � � �+ cn�1x
n�1

such that the equality

(7) p1(xi) = r(xi)

holds for every zero xi of the polynomial p(x). In other words we have the following
relation

p1(x) � r(x) ( mod p(x))

There are at least two methods of �nding r(x): by the division algorithm or by
applying, enough number of times, the substitution

xn ! �a�1n (a0 + a1x+ � � �+ an�1x
n�1):

Note that for r(x) we shall also use the notation r(p1(x); p(x)).

Suppose now that we would like to have a polynomial r(x) of the form (6)
such that the equality

(8) 1=p1(xi) = r(xi)

holds for every zero xi of p(x). Generally such a polynomial r(x) does not exist.
It exists just in the case the polynomials p(x) and 1(x) have no common zero, i.e.
they are relatively prime polynomials. Then r(x) can be found by the Euclidean
algorithm, for example. Namely, in such a way we can �nd two polynomials e1(x),
e2(x) such that the identity

e1(x)p(x) + e2(x)p1(x) = 1

holds. Hence we have the equality 1=p1(xi) = e2(xi) and consequently for r(x)
we may take the polynomial r(e2(x); p(x)). Note that for the obtained r(x), i.e.
r(e2(x); p(x)) we shall also use the notation as before: r(1=p1(x); p(x)). More
generally, if a(x)=b(x) is any rational function, where b(x) and p(x) are relatively
prime polynomials, then by r(a(x)=b(x); p(x)) will be denoted a polynomial of the
form (6) such that the equality a(xi)=b(xi) = r(xi) holds for every zero xi of the
polynomial p(x). Obviously the polynomial r(x) a unique.

Example 1. Let

(9) p(x) = x3=3� x2 + 2x+ 1=3; p1(x) = x2 � 2x+ 2:

Then using the Euclidean algorithm we obtain the following polynomial equalities

p(x) = p1(x)(x� 1)=3+ (2x+3)=3); p1(x) = (2x+3)=3 � (3x=2� 21=4)+ 29=4

from which on eliminating the polynomial (2x+ 3)=3 we infer the equality

p(x)(�6x+ 42)=29 + p1(x)(2x
2 � 9x+ 11)=29 = 1
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Thus we see that

(10) r(1=p1(x); p(x)) = (2x2 � 9x+ 11)=29

3. Now we are going to describe, step by step, a method of �nding a lower
bound of (2) for a given polynomial (1).

Firstly, we begin with the Taylor formula

p(x) = p(xi) + (x � xi)p
0(xi) + � � �+ (x � xi)

n p
(n)(xi)

n!

where i 2 f1; . . . ; ng is �xed. Hence we conclude that the following equation in d

(11) dn�1 � p0(xi) + dn�2 � p00(xi) + � � �+ d �
p(n�1)(xi)

(n� 1)!
+

p(n)(xi)

n!
= 0

has the zeros (x1 � xi)
�1; . . . ; (xi�1 � xi)

�1; (xi+1 � xi)
�1; . . . ; (xn � xi)

�1.

Secondly, let

(12) M(jp(n)(xi)=n!p
0(xi)j; p

(n�1)(xi)=(n� 1)!p0(xi)j; . . . ; jp
00(xi)2!p

0(xi)j)

be any increasing (in the sense of (5)) upper bound of the moduli of the zeros of
the equation (11). Thus, we have the inequality

jxj � xij �M(jp(n)(xi)=n!p
0(xi)j; p

(n�1)(xi)=(n� 1)!p0(xi)j; . . .

. . . ; jp00(xi)2!p
0(xi)j)(13)

Thirdly, suppose that a constant A > 0 is an upper bound of jxij (i =
1; . . . ; n).

Fourthly, suppose that we have determined the following polynomials

r(p(n)(x)=n!p0(x)); r(p(n�1)(x)=(n� 1)!p0(x); . . . ; r(p00(x)=2!p0(x))

which exist since p(x) has mutually distinct zeros. Denote these polynomials by

rn(x); rn�1(x); . . . ; r2(x)

respectively.

For any polynomial f(x) = f0 + f1x+ . . . ;+fsx
s let jf j(x) denote the poly-

nomial f0j+ jf1jx+ � � �+ jfsjx
s.

Fifthly, using the monotony of M and the inequalities jxij � A from (13) it
follows that

jxj � xij � (M(jrnj(A); jrn�1j(A); . . . ; jr2j(A)))
�1 (i 6= j)

which yields our �nal result.
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Theorem. The minimal distance of the zeros of the polynomial (1) satis�es

the inequality

(14) min
j 6=i

jxj � xij � (M(jrnj(A); jrn�1j(A); . . . ; jr2j(A)))
�1

Example 2. Let p(x) be the polynomial considered in Example 1. Then we
have the following equalities

p0(x) = p1(x); p00(x) = 2x� 2; p000(x) = 2

As we have already established we have the equality (see (10))

(15) r(1=p0(x); p(x)) = (2x2 � 9x+ 11)=29

In the next step we should decide which the M -formula to use. Let us take the
Cauchy's one. So, according to (13) we have the following inequality

jxj � xij
�1 � 1 +max(jp00(xi)=2p(xi)j; jp

000(xi)=6p
0(xi)j)

i.e. the inequality

jxj � xij
�1 � 1 +max(jxi � 1=x2i � 2xi + 2j; j1=3(x2i � 2xi + 2)j)

Using (15) it is easily seen that

1

x2 � 2x+ 2
�

2x2 � 9x+ 11

29
( mod p(x));

x� 1

x2 � 2x+ 2
�
�5x2 + 8x� 13

29
( mod p(x))

Thus the inequality of the type (14) reads

(17) min
i 6=j

jxj � xij � 1
.�

1 +max

�
2A2 + 9A+ 11

29
;
5A2 + 9A+ 13

29

��

where A is an upper bound of jx1j; jx2j; jx3j. For instance, using the Cauchy formula
(4) we conclude that

min
i6=j

jxj � xij � 29=350:
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