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ON THE CONSTRUCTION OF FINITE DIFFERENCE SCHEMES

APPROXIMATING GENERALIZED SOLUTIONS

Endre E. S�uli. Bo�sko S. Jovanovi�c, Lav D. Ivanovi�c

Abstract. We consider Dirichlet's problem for Poisson's equation in n-dimensional Eu-
clidean space assuming that the generalized solution belongs to the Sobolev spaceW s;p, 1 � s � 4,
1 < p <1. We construct �nite di�erence schemes converging to the generalized solution in integer
order discrete Sobolev-like norms.

1. Introduction. Recently there have been many theoretical advances in
constructing �nite di�erence schemes approximating generalized solutions of bound-
ary value problems. For example, Lazarov [4] presents a �nite di�erence approx-
imation of Dirichlet's problem for Poisson's equation with a generalized solution
belonging to the integer order Sobolev space W s:2; s = 2; 3 and proves that it is
convergent in discrete norms using the so called Bramble-Hilbert Lemma [1].

Unfortunately, the Bramble-Hilbert Lemma is stated only for integer order
Sobolev spaces. Recently Dupont and Scott [3] gave a constructive proof of this
Lemma using averaged Taylor series and extended it to fractional order Sobolev
spaces.

In this paper a basic framework is given which allows the application of the
�nite di�erence method in order to approximate generalized solutions belonging to
the Sobolev space W s;p; 1 � s � 4; 1 < p <1.

For simplicity, the analysis in this paper deals only with Dirichlet's problem
for Poisson's equation in rectangular domains. Extensions to other elliptic bound-
ary value problems in less special domains are possible.

2. Preliminaires and Notations. Let A be an open set in n-dimensional
Euclidean space Rn with the restriced cone property and 1 < p <1. Throughout
the paperW s;p(A) is the Sobolev space of order s � 0 [8] equipped with the Sobolev
norm

kuks;pA =

� sX
k=0

jujpk;p;A

�1=p
with jujk;p;A =

�X
j�j=k

kD�ukpLp(A)

�1=p
;
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if s is integer and
kuks;pA = (kukp[s];p;A + jujps;p;A)

1=p

if s = [s] + �, with [s] =integral part of s; 0 < � < 1 and

jujs;pA =

� X
j�j=[s]

Z
A

Z
A

jD�u(x)�D�n(y)jp

jx� yjn+�p
ÆxÆy

�1=p
:

N will stand for the set of nonnegative integers. Pl(A) will denote the set of
polynomials in n variables of degree � l over the set A, for any l 2 N.

The following lemma is an easy consequence of Theorem 6.1 of [3] (the case
� = 1; p = 2 follows from the Bramble-Hilbert Lemma [1]).

Lemma. Suppose that s = l + �, where 0 < � � 1 and l 2 N. Let � be a
bounded linear functional on W s;p(A) such that Pl(A) � kernel (�). There exists
a positive constant C (depending on A; s and p) such that for any u 2 W s;p(A)
j�(u)j � Cjujs;pA.

Remark 1. This lemma may also be proved using either Tartar's (unpublished)
Lemma [2] or Peetre's Lemma [5].

Let D0(
) denote the space of distributions on 
 for any open set 
 � Rn and
� the Laplace operator on D0(
). We shall assume for the sake of simplicity that

 is an open rectangle in Rn and consider the following boundary value problem:

Given f 2W�1;p(
), �nd a function u that satis�es

�u = �f in 
; in the sense of distributions(1)

u = 0 on @
; in the sense of trace theorems:(2)

By changing variables, we may assume, without loss of generality, that the
rectangle is 
 = (0; 1)n.

3. Molli�ers. Let us consider the function

S�(x) =

8<
:
�sin(x=2)

x=2

��
; x 6= 0

1; x = 0;

with � 2 N. By the Paley-Wiener-Schwartz Theorem [7] there exists a distribution
�� with compact support and with a Fourier transform equal to S� .

Remark 2. An easy argument shows that �0 is the Dirac distribution, �1 the
characteristic function of the interval (�1=2; 1=2) and

�2(x) =

�
1� jxj; x 2 (�1; 1)

0; x 62 (�1; 1)

Let � = (�1; . . . ; �n) 2 Nn; x = (x1; . . . ; xn) 2 Rn; G� a distribution
de�ned by G�(x) = h�n�(x=h) with �� the tensor product of distributions
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��i; i = 1; . . .n and h a positive parameter. For u 2 D0(Rn) the operator T�
given by T�u = u �G� will be called molli�er.

Let u 2 D0(
) and u� 2 D0(Rn) any extension of u . T�u will denote the
restriction of T�u

� to the rectangle 
� = fx 2 Rn;h�i=2 < xi < 1 � h�i=2; i =
1; . . . ; ng. Finally let us observe that t�u does not depend on u� thus it is well
de�ned.

4. Construction of Finite Di�erence Schemes. Let n0 � 2 be an integer
and h = 1=n0. We de�ne the following grids:

Rn
h =fx = (x

(i1)
1 ; . . . ; x(in)n ) 2 Rn : x

(ij )
j = ij � h; jij j <1; j = 1; . . . ; ng

!h =
 \Rn
h ; 
h = @
 \ Rn

h; !h = !h [ 
h;


jh =
h \ ((0; 1)j�1 � f0; 1g� (0; 1)n�j); j = 1; . . . ; n


n+1h =
h \ [
n
j=1(0; 1)

j�1 � f0g � (0; 1)n�j

!+h =!h [ 
n+1h :

For � function of discrete arguments de�ned on Rn
h , set

(�j�)(x) =
�(x + ejh)� �(x)

h
; (rj�)(x) =

�(x) � �(x� ejh)

h
;

with ej = (Æ1j ; . . . ; Ænj) and de�ne the discrete Laplace operator �h by

�h� =

nX
j=1

�jrj�:

Finally let us introduce the following discrete norms:

k�k0;p;h =

�
hn
X
x2!h

j�(x)jp
�1=p

j[�k0;p;h =

�
hn
X
x2!+

h

j�(x)jp
�1=p

k�k1;p;h =

�
k�kp0;p;h +

nX
j=1

j[�j�k
p
0;p;h

�1=p

k�k2;p;h =

�
k�kp1;p;h +

X
i6=j

j[�i�j�k
p
0;p;h +

nX
i=1

k�iri�k
p
0;p;h

�1=p
:

Consider the following �nite di�erence scheme

��hz =

nX
j=1

�jrj�j ; x 2 !h(3)

z(x) = 0; x 2 
h(4)
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with �j de�ned on !h[

j
h and equal to zero on 


j
h; j = 1; . . . ; n. An easy argument

based on the discrete multiplicator techniques shows that

kzk0;p;h � C

nX
j=1

k�jk0;p;h(5)

kzk1;p;h � C

nX
j=1

j[�j�jk0;p;h(6)

kzk2;p;h � C

nX
j=1

k�jrj�jk0;p;h(7)

with C positive constant independent of z and h.

Boundary value problem (1), (2) has a unique solution u 2 W 1;p
0 (
) = fu 2

W 1;p(
) : u = 0 on @
g; 1 < p < 1. Let 
� = (�1; 2)n. Extension of u by 0

outside 
 is a continuous mapping of W 1;p
0 (
) into W 1;p(
�) [6]. Hence,

u! u� = odd extension of u

is a continuous mapping of W 1;p
0 (
) into W 1;p(
�). Let f� = �u� and e =

(1; . . . ; 1). Applying T2e we have

nX
j=1

�jrjT2e�2eju
� = �(T2ef

�)(x); x 2 !h:

T2ef
� is a continuous function on 
2e and T2ef

� = T2ef on 
2e. Thus,

(8)

nX
j=1

�jrjT2e�2eju
� = �(T2ef)(x); x 2 !h

Similarly, Teu
� is a continuous function on 
e; Teu

� = Teu on 
e and

(9) (Teu
�)(x) = 0; x 2 
h:

We associate to (1), (2) the �nite di�erence scheme

�h� = �(T2ef)(x); x 2 !h(10)

�(x) = 0; x 2 
h:(11)

5. Convergence of the Finite Di�erence Scheme

Theorem. Let u be the solution of boundary value problem (1), (2), � the
solution of discrete problem (10), (11) and k 2 f0; 1; 2g. If u belongs to W s;p(
)
with 1 � s � k + 2 and 1 < p <1, the following error estimate holds

kTeu� �kk;p;h � Chs�k jujs;p;
;
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with a positive constant C independent of h. Moreover, if s � k then �nite di�er-
ence scheme (10), (11) converges in the dicrete norm k � kk;p;h.

Proof . We shall give the proof for k = 0. The procedure is similar for k = 1
and k = 2. By (8)|(11) function z = � � Teu

� is de�ned on !h and satis�es (3),

(4) with �j = Teu
� � T2e�2eju

�. Function �j is de�ned on !h [ 
jh and equal to

zero on 
jh. Thanks to inequality (5) it suÆces to estimate k�jk0;p;h; j = 1; . . . ; n.
For 1 � ij � n0 � 1 we introduce the squares

E(i1; . . . ; in)=fx=(x1; . . . ; xn) 2 R
n : (ij � 1)h < xj < (ij + 1)h; j = 1; . . . ; ng

E = ft = (t1; . . . ; tn) 2 R
n : �1 < tj < 1; j = 1; . . . ; ng;

and the aÆne mapping

x = (x1; . . . ; xn) 2 E(i1; . . . ; in)! t = (t1; . . . ; tn) 2 E, with xj = ijh+ tjh; j =
1; . . . ; n. Set ~u(t) = u�(x(t)). Then,

�j(i1h; . . . ; inh) =

Z 1=2

�1=2

� � �

Z 1=2

�1=2

~u(t1; . . . ; tn)Æt1 � � � Ætn�

�

Z 1

�1

� � �

Z 1

�1

�2e�2ej (t1; . . . ; tn)~u(t1; . . . ; tn)Æt1 � � � Ætj�1Ætj+1 � � � Ætn:

Furthermore, �j(i1h; . . . ; inh) is a bounded linear functional on W s;p(E); s � 1
and P 1(E) �kernel (�j(i1h; . . . ; inh)). By the lemma,

j�j(i1h; . . . ; inh) � jCj~ujs;p;E ; 1 � s � 2;

thus
j�j(i1h; . . . ; inhj � Chs�n=pju�js;p;E(i1;... ;in); 1 � s � 2:

Finally,
k�jk0;p;h � Chsjujs;p;
; 1 � s � 2

and

kTeu� �k0;p;h = kTeu
� � �k0;p;h = kzk0;p;h � Chsjujs;p;
; 1 � s � 2:

That completes the proof.

Remark 3. Introducing fractional order discrete Sobolev like norms k � kk;p;h
and using the discrete interpolation technique it is possible to show that the state-
ment of the theorem holds for all k; 0 � k � 2.
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