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ON THE CONSTRUCTION OF FINITE DIFFERENCE SCHEMES
APPROXIMATING GENERALIZED SOLUTIONS

Endre E. Siili. Bosko S. Jovanovié, Lav D. Ivanovié

Abstract. We consider Dirichlet’s problem for Poisson’s equation in m-dimensional Eu-
clidean space assuming that the generalized solution belongs to the Sobolev space W5:P,1 < s < 4,
1 < p < oo. We construct finite difference schemes converging to the generalized solution in integer
order discrete Sobolev-like norms.

1. Introduction. Recently there have been many theoretical advances in
constructing finite difference schemes approximating generalized solutions of bound-
ary value problems. For example, Lazarov [4] presents a finite difference approx-
imation of Dirichlet’s problem for Poisson’s equation with a generalized solution
belonging to the integer order Sobolev space W*2, s = 2,3 and proves that it is
convergent in discrete norms using the so called Bramble-Hilbert Lemma [1].

Unfortunately, the Bramble-Hilbert Lemma is stated only for integer order
Sobolev spaces. Recently Dupont and Scott [3] gave a constructive proof of this
Lemma using averaged Taylor series and extended it to fractional order Sobolev
spaces.

In this paper a basic framework is given which allows the application of the
finite difference method in order to approximate generalized solutions belonging to
the Sobolev space WP, 1 <s<4, 1< p< 0.

For simplicity, the analysis in this paper deals only with Dirichlet’s problem
for Poisson’s equation in rectangular domains. Extensions to other elliptic bound-
ary value problems in less special domains are possible.

2. Preliminaires and Notations. Let .4 be an open set in n-dimensional
Euclidean space R™ with the restriced cone property and 1 < p < oo. Throughout
the paper W#?(A) is the Sobolev space of order s > 0 [8] equipped with the Sobolev
norm
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if s is integer and

lallopa = (lalley o+ [ul?, Y7

it s = [s] + o, with [s] =integral part of s, 0 < ¢ < 1 and

|Du(z) — D*n(y)[? )”p
g pa = oxd .
ulspa (Z /A/A EERE Y

la=[s]
N will stand for the set of nonnegative integers. P!(A) will denote the set of
polynomials in n variables of degree <[ over the set A, for any [ € N.

The following lemma is an easy consequence of Theorem 6.1 of [3] (the case
o =1, p =2 follows from the Bramble-Hilbert Lemma [1]).

LEMMA. Suppose that s =1+ o, where 0 < 0 <1 andl € N. Let n be a
bounded linear functional on W*P(A) such that P'(A) C kernel (). There erists
a positive constant C (depending on A,s and p) such that for any u € W*P(A)

In(w)| < Cluls pa-

Remark 1. This lemma may also be proved using either Tartar’s (unpublished)
Lemma [2] or Peetre’s Lemma [5].

Let D'(£2) denote the space of distributions on (2 for any open set & C R™ and
A the Laplace operator on D'(€2). We shall assume for the sake of simplicity that
 is an open rectangle in R™ and consider the following boundary value problem:

Given f € W~1P(Q), find a function u that satisfies

(1) Au = —f in Q, in the sense of distributions

(2) v =0 on 0, in the sense of trace theorems.

By changing variables, we may assume, without loss of generality, that the
rectangle is 0 = (0,1)™.

3. Mollifiers. Let us consider the function
. )\ v
(sm(a:/ )) 240
Sy(z) = x/2
1, =0,
with v € N. By the Paley-Wiener-Schwartz Theorem [7] there exists a distribution
O, with compact support and with a Fourier transform equal to S,,.

Remark 2. An easy argument shows that ©g is the Dirac distribution, ©; the
characteristic function of the interval (—1/2,1/2) and

_ ].—|1‘|, :L’E(—].,].)
©:(c) = { 0, zd(-1,1)

Let v = (v1,...,v) € N & = (21,...,2,) € R" @G, a distribution
defined by G,(x) = h™"O(z/h) with ©, the tensor product of distributions
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©,i, 1t = 1,...n and h a positive parameter. For u € D'(R™) the operator T,

given by T,u = u x G, will be called mollifier.

Let v € D'(R2) and u* € D'(R") any extension of u. T,u will denote the
restriction of T,u* to the rectangle Q, = {z € R™;hy;/2 < z; < 1 — hy;/2, i =
1,...,n}. Finally let us observe that ¢,u does not depend on u* thus it is well

defined.

4. Construction of Finite Difference Schemes. Let ng > 2 be an integer

and h = 1/ng. We define the following grids:

Ry ={z = (a:gil),... ,xlin)) cR": 2\ =ij-h, |ij]<oo, j=1,...

J
Wh Zilrjlfz, Yh =:8f2r1132,23h = wp U,

7 =y N (0,177 x {0,1} x (0,1)" ), j=1,...,n
Y = N U (0,1)771 x {0} x (0,1)"

+ n+1
wy, =wp Uy,

For v function of discrete arguments defined on R}, set

(Agp)(a) = LGN D (g = HEL VTG0

with e; = (d1;,...,0,;) and define the discrete Laplace operator Ay by

Z&hV ::jE:ZAj‘7jV'

j=1
Finally let us introduce the following discrete norms:

[ :(hn 5 |y(m)|p>””

TEWHh

[Bllo.p = (hn Z+ IV(a:)|p> Hr

TEW),

n 1/p
Wllipn = (nung,p,h Y |[Aju||§,,,,h)
j=1

n 1/p
1v]l2,p,n = <||V||‘f,p,h + ) AAIE,+ Y ||AiViV||§,p,h> :
i=1

i#£]
Consider the following finite difference scheme
(3) —Apz = Z A]‘anj, T € wp

() d@) =0,  zem

;n}



126 Siili, Jovanovié, Ivanovié¢

with n; defined on th'y,Z and equal to zero on 'y,];, j=1,...,n. An easy argument
based on the discrete multiplicator techniques shows that

(5) 12llo.on < C Y Ijllo.pon
i=1

(6) Izllpn < C D 1A m;llopn
i=1

(7) I2ll2.0n < C > I1A;Vmjllopn
i=1

with C' positive constant independent of z and h.

Boundary value problem (1), (2) has a unique solution u € Wy?(Q) = {u €
WhP(Q) :u=0o0n 00}, 1 <p < oo. Let Q* = (—1,2)". Extension of u by 0
outside Q is a continuous mapping of W, *(Q) into W'?(Q*) [6]. Hence,

u — u* = odd extension of u

is a continuous mapping of W, ?(Q) into W'2(Q*). TLet f* = Au* and e =
(1,...,1). Applying Ts, we have

n
ZAjVjTQe_QeJ.U* = —(Tgef*)(w), Tr € Wh-
j=1
T f* is a continuous function on Q. and Ts. f* = To. f on Qs.. Thus,
n
(8) ZAjVjTQe_QeJ.U* = —(Tgef)(x), T € wp
j=1
Similarly, T.u* is a continuous function on ., Teu* = T.u on Q. and
9) (Teu™)(z) =0, @ € Y.

We associate to (1), (2) the finite difference scheme

(10) Apy = —(Toef)(z), € wy
(11) v(z) =0, €.

5. Convergence of the Finite Difference Scheme

THEOREM. Let u be the solution of boundary value problem (1), (2), v the
solution of discrete problem (10), (11) and k € {0,1,2}. If u belongs to W*P(2)
with 1 <s<k+2and 1< p< oo, the following error estimate holds

I Tew — v||kpn < Ch57k|“|s,p,9:
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with a positive constant C' independent of h. Moreover, if s > k then finite differ-
ence scheme (10), (11) converges in the dicrete norm || - ||k p,h-

Proof. We shall give the proof for & = 0. The procedure is similar for k¥ = 1
and k = 2. By (8)—(11) function z = v — Tu* is defined on @), and satisfies (3),
(4) with n; = Teu* — The_se;u*. Function n; is defined on wy U fy,i and equal to
7ero on 'y,];. Thanks to inequality (5) it suffices to estimate ||n;llop,n, J=1,...,n.
For 1 <ij; <ng — 1 we introduce the squares

E(i1,... in)={z=(z1,... ,2n) ER":(i; —V)h<z; < (ij+1)h, j=1,...,n}
E={t=(t1,...,ty) ER": =1<t; <1, j=1,...,n},

and the affine mapping
z=(21,...,2n) € E(i1,... ,in) > t=(t1,... ,tn) € E, with z; = ijh +t;h, j=
1,...,n. Set @(t) = u*(x(t)). Then,

1/2 1/2
n;(@1h, ... inh) :/ / W(ty, ..., tn)0ty - -+ Oty —
—1/2 —1/2

1 1
—/ / Osese; (b1 s )ity ty)dts -+ Otj_10tjy1 -+ Oty
-1 -1

Furthermore, n;(i1h,... ,inh) is a bounded linear functional on W*P(E), s > 1
and P'(E) Ckernel (n;(i1h,... ,i,h)). By the lemma,

I (ith, ... inh) < |Clilspp, 1<s<2,

thus
n;(irh, ... sinh| < CRTPl*|, b g i), 1< s <20
Finally,
Injllop,n < Ch¥lulspa, 1<s<2
and

1Tt = Vo = ITew” = Vllopu = lzllopn < CH*lulupr, 1< s <2.
That completes the proof.

Remark 3. Introducing fractional order discrete Sobolev like norms || - ||x,p,n
and using the discrete interpolation technique it is possible to show that the state-
ment of the theorem holds for all k, 0 < k < 2.
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