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INTEGRABILITY OF TENSOR STRUCTURES OF

ELECTROMAGNETIC TYPE

J. M. Hernando, E. Reyes, P. M. Gadea

Abstract. We study characterizations of the integrability of G-structures de�ned by tensor
�elds of elektromagnetic type.

1. Introduction. In [3] were considered the G-structures de�ned by a (1,1)

tensor ~J on a di�enertiable manifold Mn such that

( ~J2 � f2)( ~J2 + g2) = 0;

where f; g are C1 functions on Mn nowhere zero. This situation generalizes that
of Hlavaty [4] and Mishra [7]. They consider the so called elektromagnetic tensor
�elds (of �rst class) on a 4-manifold which is the space-time of General Relativity.

In [3] it was proved that the G-structure P de�ned by such a tensor �eld ~J is
identical to the G-structure de�ned by a (1, 1) tensor �eld J that satis�es the

same conditions as ~J but with f = g = 1, an so we have J4 = 1.

On the other hand, that situation generalizes also the almost product and
almost complex structures simultaneously. In [9] the family of linear connections
that parallelize J (and an adapted metric also) is given. Connections partially
adapted to such a structure are studied in [11]. In this note we study several
characterizations and conditions of integrability of the (G-stucture de�ned by the)

tenzor �eld ~J .

Thus, we consider the following situation:

Let Mn be a di�erentiable manifold and ~J a (1,1) tensor �eld such that:

a) ( ~J2 � f2)( ~J2 + g2) = 0, where f; g are C1 functions on Mn with f; g
nowhere null;

b) The characteristic polynomial of ~J is (x� f)r1(x+ f)r2(x2 + g2)s, where
r1; r2; s are constants greater than or equal to 1 such that r1 + r2 + 2s = n. Then,
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since J which satis�es a) and b), but with f = g = 1, de�nes the same G-structure

P as ~J (not an associated G-structure, but exactly the same P see [3]), we can
characterize the integrability of P in terms of J .

2. Integrability in terms of the Nijenhuis tensor. We denote from now
on by X;Y; . . . , vectors �elds on Mn. We consider the complementary projection
operators l = (J2 + 1)=2; l3 = (1� J2)=2, which verify

Jl = lJ ; J2l = l; Jl3 = l3J; J
2l3 = �l3;

denote by L and L3 the corresponding distributions, and put L = L1 �L2, where
L1 and L2 are distributions corresponding to the projectors l1 and l2 on L given
by the eigenvalues +1 and �1 of J jL. Let us decompose the Nijenhuis tensor of in
the followig manner:

N(X;Y ) = lN(lX; lY ) + l3N(lX; lY ) +N(lX; l3Y )

+N(l3X; lY ) + lN(l3X; l3Y ) + l3N(l3X; l3Y ):

Then we have the following

Proposition 2.1. a) L is integrable i� (8X;Y )l3N(lX; lY ) = 0;

b) L3 is integrable i� (8X;Y )lN(l3X; l3Y ) = 0;

c) If L is integrable, the almost product structure de�ned by J jL on each
integral manifold of L is integrable i� (8X;Y )N(lX; lY ) = 0;

d) If L3 is integrable, the almost complex structure de�ned by J jL3
on each

integral manifold of L3 is integrable i� (8X;Y )N(l3X; l3Y ) = 0.

Proof . a) N(lX; lY ) = [JlX; JlY ] � J [JlX; lY ] � J [lX; JlY ] + J2[lX; lY ].
Thus, if L is integrable, each bracket is an element of L and so l3N(lX; lY ) = 0.
Conversely, suppose now that l3N(lX; lY ) = 0; then we obtain easily:

l3N(JlX; JlY ) + Jl3N(JlX; lY ) + Jl3N(lX; JlY )

=3l3[lX; lY ] + l3(N(lX; lY )� J2[lX; lY ])

=4l3[lX; lY ] + l3N(lX; lY );

and since by the hypothesis l3N(lX; lY ) = 0; L is integrable;

b) Analogous to a), if we consider now

lN(Jl3X; Jl3Y ) + JlN(Jl3X; l3Y ) + JlN(l3X; Jl3Y );

c) If L is integrable, then J jL induces on each integral manifold of L an
almost product structure. As such a structure is integrable i� its Nijenhuis tensor
is zero, that is, NJjL(lX; lY ) = 0, and since NJjL(lX; lY ) = N(lX; lY ), we obtain

c);

d) Similar to c). �
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De�nition 2.2. We say that J is partially integrable i� L and L3 are inte-
grable, and also the almost product and almost complex structure induced by J
on the integral manifolds of L and L3, respectively.

Thus J is partially integrable i� N(X;Y ) = N(lX; l3Y ) +N(l3X; lY ).

So, we consider now the condition N(lX; l3Y ) = 0. Since the Lie derivative
L�Y J veri�es by de�nition (L�Y J)X = J [X;Y ]� [JX; Y ], we deduce:

a) N(lX; l3Y ) = J(Ll3Y J)lX � (LJl3Y J)lX ;

b) N(l3X; lY ) = J(LlY J)l3X � (LJlY J)l3X ;

and from these expressions it is immediate that:

Proposition 2.3. lN(lX; l3Y ) = 0 (resp. l3N(lX; l3Y ) = 0) for every
X;Y i� l(Ll3ZJ)l = 0 (resp. l3(LlZJ)l3 = 0 for every Z .

Corollary 2.4. N(lX; l3Y ) = 0 i� l(Ll3ZJ)l = l3(llZJ)l3 = 0, for every
X;Y; Z.

Now, we have

Theorem 2.5. J is integrable i� NJ = 0.

Proof . J is integrable i� for every x 2Mn, there exists a heighbourhood U
of x and a coordinate system in U; fxig, such that the basis f@=@xig; i = 1; . . . ; n
is adapted in U . That is, J can be expressed as a linear combination of products
@=@xi 
 dxj with constant coeÆcients, and so, trivially, N = 0.

Conversely, suppose N = 0. By a)and b) of Prop. 2.1, L and L3 are
integrable. Thus, for each x 2 Mn there exists a chart centered at x; (U;'), with
coorinates fxi; yag; i = 1; . . . ; r1 + r2; a = 1; . . . 2s, such that

@=@xi 2 L; @=@ya 2 L3:

So, in the local basis f@=@xi; @=@yag; J has a matrix of the from

J =

�
J ij 0
0 Jab

�
;

that is, J = J ij@=@x
i 
 dxj + Jab @=@y

a 
 dyb. Moreover, l = @=@xi 
 dxi, and

l3 = @=@ya 
 dya. Thus,

L@=@ycJ =
@J ij
@yc

@

@xi

 dxi +

@Jab
@yc

@

@ya

 dyb:

Hence

l(L@=@yaJ)l =
@J ij
@ya

@

@xi

 dxj :

So, Corollary 2.4 implies @J ij=@y
a = 0 (and analogously @Jab =@x

i = 0).
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Consider now the integral manifold Lx of L , of coordinates ya = 0. Since
the almost product structure on Lx is integrable, there exist coordinate functions
ui in a neighbourhood of x 2 Lx in Lx such that

@=@ui 2 L1; i = 1; . . . ; r1; @=@u
i 2 L2; i = r1 + 1; . . . ; r1 + r2;

where these �elds are considered in the regular submanifold Lx \ U .

We de�ne new coordinates in a neighbourhood W of x in U : put, for
x0 2W ,

ui(x0) = ui('�1(x1(x0); . . . ; xr1+r2(x0)); 0; . . . ; 0); �ya(x0) = ya(x):

Then, for the new coordinate system fui; y�ag we have

@

@xi
=
@uj

@xi
@

@uj
; dxi =

@xi

@uj
duj ; where

@

@�ya

�@ui
@xi

�
=

@

@�ya

�@xi
@uj

�
= 0

This is a new coordinate system adapted to L and L3, and we have

J = J
i
j

@

@ui

 duj + J

a
b

@

@�ya

 d�yb; with

@J
i
j

@�ya
= 0:

But for the points of coordinates �ya = 0 we have by construction (see 2.1)

J
i
j =

�
Ir1 0
0 �Ir2

�
:

Hence, in certain neighbourhood of x we also have the same matrix expression

for J
i
J .

Similarly, since the structure de�ned by J in L3x is almost complex, a change
of coordinates analogous to the previous one gives for J

a
b the expression�

0 �Is
Is 0

�
:

In other words, we have deduced that J is integrable. �

3. Integrability in terms of a linear connection. Now, let r be a
linear connection without torsion on M b and let Q be the (1, 2) tensor �eld on
Mn de�ned by Q(X;Y ) = f(r�

JY J)X + J(r�

Y J)X + 2J(r�

XJ)Y g=4.

We de�ne a new connection D by means of the expression

DXY = lrX lX � lr:
lY l3X + l3rX l3Y � l3rl3Y lX + lQ(lX; lY )� l3Q(l3X; l3Y ):

It is easily proved that:

i)DX lY = lrX lY � lrlX l3X + lQ(lX; lY );

ii)DX l3Y = l3rX l3Y � l3rl3Y lX � l3Q(l3X; l3Y );

iii)DlX lY = lrlX lY + lQ(lX; lY );

iv)Dl3X lY = lrl3X lY � lr:
lY l3X ;

v)DlX l3Y = l3rlX l3Y � l3rl3Y lX ;

vi)Dl3X l3X = l3rl3X l3Y � l3Q(l3X; l3Y );

vii)DX l = DX l3 = 0:

(3.1)
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So we have

Proposition 3.1. The torsion T of D has the expression

T (X;Y ) = 1=4flN(lY; lX)+ l3N(l3N(l3X; l3Y )g � l[l3X; l3Y ]� l3[lX:lY ]:

Proof . Immediate from the expression for D and Q , applying that r is
torsionless, and proving that Q(X;Y )�Q(Y;X) = N(Y;X)=4 �

From that we obtain

Corollary 3.2. (8X;Y )T (lX; l3Y ) = 0.

We now prove

Lemma 3.3. a) The distribution L is integrable i� l3T (lX; lY ) = 0;

b) The distribution L3 is integrable i� lT (l3X; l3Y ) = 0;

c) If L is integrable, then the almost product structure induced by J jL on
each integral manifold of L is integrable i� lT (lX; lY ) = 0;

d) If L3 is integrable, then the almost complex structure induced by J jL3
on

each integral manifold of L3 is integrable i� l3T (l3X; l3Y ) = 0;

e) J is partially integrable i� T (X;Y ) = 0;

f) lN(JlX; lY ) = lN(lX; JlY ); g) lT (JX; lY ) = lT (lX; JY );

h) l3N(Jl3X; l3Y ) = l3N(l3X; Jl3Y ); i) l3T (JX; l3Y ) = l3T (l3X; JY );

j) (Dl3XJ)l3Y = 0; k) (D:
lXJ)lY = 0.

Proof . a) If suÆces to prove l3T (lX; lY ) = �l3[lX; lY ];

b) analogous to a); c) it suÆces to consider lT (lX; lY ) = lN(lY; lX)=4 and
a), c) of Prop. 2.1; d) it is deduced from l3T (l3X; l3Y ) = l3N(l3X; l3Y )=4, and b),
d) of Prop. 2.1.;

e) from Cor. 3.2 we obtain T (X;Y ) = T (lX; lY ) + T (l3X; l3Y ). If J is
partially integrable, from a) and c) we deduce T (lX; lY ) = 0 and from b) and
d) that T (l3X; l3Y ) = 0. Hence T (X;Y ) = 0. Conversely, T (X;Y ) = 0 implies
T (lX; lY ) = T (l3X; l3Y ) = 0 and thus lT (lX; lY ) = l3T (lX; lY ) = lT (l3X; l3Y ) =
l3T (l3X; l3Y ) = 0.

From these equalities and from a), b), c), d) we deduce that J is partially
integrable; f) the proof is immediate and moreover, as a consequence, we obtain
lN(JlX; JlY ) = lN(lX; lY ); g) lT (JX; lY ) = lN(lY; JlX)=4 and lT (JX; lX) =
lN(JlY; lX)=4, and from f) we obatin the result; h) the proof is analogous to that
of f) and we deduce here l3N(Jl3X; Jl3Y ) = �l3N(l3X; l3Y );

i) we have l3T (JX; l3Y ) = l3N(Jl3X; l3Y )=4 and l3T (l3X; JY ) = l3N
(l3X; Jl3Y )=4, and the conclusion follows from h);

j) from (3.1), vi) we have Dl3XJl3Y = l3rl3XJl3Y � l3Q(l3X; Jl3Y ) and
JDl3X l3Y = Jl3rl3X l3Y � l3JQ(l3X; l3Y ). Substracting we obtain

(Dl3XJ)l3Y = l3(rl3XJ)l3Y + l3fJ(rJl3Y J)l3X + J2(rl3XJ)l3X

+ 2J2(rl3XJ)l3Y � (rJ2l3Y J)l3X � J(rJl3XJ)l3X

� 2J(rl3X )Jl3Y g=4 = l3(rl3XJ)l3Y � l3(rl3XJ)l3Y = 0;
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k) analogous to that of j), by using (3.1), iii). �

Theorem 3.4. J is integrable i� there exists a linear conection without torsion
that parallelzes J . If J is integrable, then D gives an explicit example of such a
connection.

Proof . Suppose J integrable. Then for the earlier connection D we have:
1) D is torsionless, and 2) DJ = 0. Indeed, if J is integrable then it is partially
integrable and, from e) of Lemma 3.3. we obtain 1). On the other hand, if J is
integrable, N(X;Y ) = 0, and since from (3.1), v) we have

(DJlXJ)l3Y + (D�

lXJ)Jl3Y = l3N(lX; l3Y ) = 0;

we deduce
(D�

JlXJ)l3Y = �(DlXJ)Jl3Y: (3.2)

Substituting Y by JY we have

(DJlXJ)l3JY = �(DlXJ)J
2l3Y = (DlXJ)l3Y; (3.3)

and, if in (3.2) we substitute X by JX , we have

(D�

JlXJ)Jl3Y = �(DJ2lXJ)l3Y = �(D�

lJ)l3Y: (3.4)

From (3.3) and (3.4) we deduce

(D�

lXJ)l3Y = 0: (3.5)

From (3.1), iv) we have lN(l3X; lY ) = (DJl3XJ)lY + (Dl3XJ)JlY ; if J is
integrable we obtain analogously

(Dl3XJ)lY = 0: (3.6)

But in j) and k) of Lemma 3.3. we have

(Dl3XJ)l3Y = 0 and (DlXJ)lY = 0 (3.7)

Hence, from (3.5) (3.6) and (3.7) follows 2).

Conversly, suppose now that there is a linear connection r without torsion
such that rJ = 0. If we consider Q from r as before, we see that Q = 0. But
in the proof of the Prop. 3.1 we have seen that Q(X;Y )�Q(Y;X) = N(Y;X)=4;
that is, J is integrable.

Remark . As is well known, Lehmann-Lejeune [5] proves that, for 0-deformable
(1,1) tensor �elds, the integrability is equivalent to the existence of a torsionless
structural local connection. In our case, we have a global connection and we also
give its explicit expression when J is integrable.

4. Integrability in terms of the structure tensor. We have now at
disposal two criteria of integrability of the G-structure P de�ned by ~J . The �rst
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one in terms of the Nijenhuis tensor of the �eld J , the second one in terms of
a linear connection. A third criterion is that which expresses the integrability in
terms of the Guillemin stucture tensors [2].

The �eld ~J is not 0-deformable, but the associted �eld J , which de�nes the
same structure P , is 0-deformable and so, we can anew characterize the integra-
bility of P in terms of J ; but from the results of Lehmann-Lejeune [5] it suÆces
to consider, in this case, the Chern-Ehresmann-Bernard tensor [1] and have the
equivalence of the integrability with nullity of the 1-st structure tensor of P , as we
express in the �nal theorem.

5. Integrability in terms of prolongations and complete lifts. Now,
we consider of the one hand the complete lift Jc of J in the sense of Yano-Kobayashi
[12], whic is a (1,1) tensor �eld on TMn de�ned from J and, on the other hand,

the canonical prolongation Ĵ of J in the sense of Morimoto [8], which is also a
(1,1) tensor �eld on TMn. Firstly, we have the following:

Proposition 5.1. The canonical prolongation to TNn of the (J4 = 1)-

structure J is a (J4 = 1)-structure Ĵ which coincides with the complete lift Jc of
J .

Proof . The structural group G correspoding to J (and ~J) is that of matrices
of the form [3]

where A 2 Gl(r1;R); B 2 Gl(r2;R); C + iD 2 Gl(s;C); r1 + r2 + 2s = n.

If we denote Ĝ the structural group of the canonical prolongation P̂ of P de�ned
by J (and ~J), it has as elements the ĝ obtained by means of

ĝ = jn(fg;Xg); g 2 G; X 2 g;

where g denotes the Lie algebra of G;X the translated Rg�1�Y , for a certain
Y 2 TgG, and jn the imbedding jn : TGl(n;R)! Gl(2n;R).

More precisely,
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where M 2 M(r1;R); N 2 M(r2;R); P + iQ 2M(s;C).

It is immediate that jn(fg;Xg), belongs to the matrix group Gl(2r1;R) �
Gl(2r2;R) � Gl(2s;C), by means of a convenient rearrangement of the boxes of
the matrix (5.1). Hence, we have the structural group od a (J4 = 1)-structure on
TMn.

On the other hand, for a given local coordinate system fU; x1; . . . ; xng on
Mn, and a section � of the principal bundle of frames FMn on U , expressed as

�(x) =
�
. . . ;

nX
i=1

�ij(x)
@

@xi

???
x
; . . .

�
; x 2 U;

Morimoto [8] proves that ~� = jMn � T� (where jMn is the canonical embedding
jMn : TFMn ! FTMn), is a section of FTMn on TU , which can be expressed as

~�
� nX
i=1

yi
@

@xi

???
x

�
=
�
. . . ;

nX
i�1

�ij(x)
@

@xi

???
x
+

nX
i;k=1

@�i(x)

@xk
yk

@

@yi

???
X
. . . ;

nX
i=1

�ij(x)
@

@yi

???
X
; . . .

�

where fx1; . . . ; xn; y1; . . . ; yng is the local coordinate system induced in TU , and

X =
nP
i=1

yi @
@xi

???
x
2 TU .

We now consider the diagram
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with the explained notations. Let again fU; x1; . . . ; xng a local coordinate system
onMn, and � a section of the G-structure P on U ; then ~� = jMn �T� is a section
of the canonical prolongation P̂ of P , since

�̂(TU) = jMn � T�(TU) � jMn(T (�(U)) � jMn(TP ) = P̂ :

Now, let J0 : R
n ! Rn be an automorphsm such that J40 = 1.

From the diagram

TxM
n Jx����! TxM

n

�(x)

x??
x??�(x)

Rn J0����! Rn

we de�ne Jx as Jx = �(x) � J0 � �(x)
�1.

Then J : x �! Jx is the (J
4 = 1)-structure associated to P globally de�ned.

Indeed:

a) J4 = 1. Immediate from J40 = 1;

b) globaly de�ned: If x 2 U \U 0, where U;U 0 are coordinate neghbourhoods
and �0 is a section of P on U 0, then J 0x = �0(x) � J0 � �

0(x)�1, but since

�0(x) = g(x) � �(x); g(x) 2 G:

we deduce

J 0x = g(x) � �(x) � J0 � �(x)
�1 � g(x)�1 = g(x) � Jx � g(x)

�1:

We now consider TJ0 : TR
n ! TRn. Since

TJ0 =

�
J0 0
0 J0

�

we have (TJ0)
4 = 1, and we de�ne

Ĵ(X) = �̂(X) � TJ0 � �̂(X)�1; for every X 2 TU:

It is clear that Ĵ4 = 1, and Ĵ is the (J4 = 1)-structure on TMn canonical
prolongation of J , since �̂ = jMn � T�.
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On the other hand, we can choose as a basis of TXTM
n the set�

@

@x1

???
X
; . . . ;

@

@xn

???
X
;
@

@y1

???
X
; . . . ;

@

@yn

???
X

�
:

Then, using the earlier expressions for �̂ and TJ0, we obtain

Ĵ(x)= �̂(x) � TJ0 � �̂(x)
�1=

�
�(x) 0
@�(x) �(x)

��
J0 0
0 J0

��
�(x) 0
@�(x) �(x)

��1

=

�
Jx 0
@Jx Jx

�
;

which is precisely the formula of the complete lift Jc of J (see [12]), being

@Jx =

� nX
k=1

yk
@J ij
@xk

�

�

But Morimoto [8] proves that a G-structure P is integrable if and only if the

canonical prolongation P̂ is integrable; hence we obtain.

Proposition 5.2. Let (Mn; J) be a (J4 = 1)-manifold. Then the following
statements are equivalent:

a) The G-structure P de�ned by J is integrable;

b) The Nijenhuis tensor of the tensor Ĵ corresponing to the canonical prolon-

gation P̂ of P is zero;

c) The Nijenhuits tensor of the complete lift Jc of J is zero.

6. J-Lie groups. Now, we consider a suÆcient condition in order to a
(j4 = 1)-structure be integrable.

Let (M1; J1) and (M2; J2) be two (J4 = 1)-manifolds. We say that a dif-
ferentiable map f : M1 ! M2 is a J-map if and anly if the following diagram is
commutative

TxM1
f�

����! Tf(x)M2

J1

??y
??yJ2 for every x2M1:

TxM1
f�

����! Tf(x)M2

De�nition 6.1. We call J-Lie group a Lie Group G with a (J4 = 1)-structure
J such that the usual translations Lg and Rg are J-maps, for every g 2 G.

Thus, we have

Proposition 6.2. If G is a J-Lie group, then J is integrable.

Proof . Since Lg and Rg are J-maps, we have ad g � J = J � ad g.
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In particular for g = exp tX; X 2 g; t 2 R, we have

exp(Ad tX) � JY = J(exp(Ad tX)Y ); for every Y 2 g: (6.1)

Moreover, we obtain

exp(Ad tX)JY = JY + t[X; JY ] + t2[X; [X; JY ]]=2 + � � �

J exp(Ad tX)Y = JY + tJ [X;Y ] + t2J [X; [X;Y ]]=2 + � � � :

Hence, from (6.1) and taking the limit for t! 0 we deduce [X; JY ] = J [X;Y ],
and also J [X;Y ] = �J [Y;X ] = �[Y; JX ] = [JX; Y ].

Thus, it is immediate N(X;Y ) = 0; X; Y 2 g. �

7. Characterizations of the integrability. Finally, according to the
earlier results we can give the following:

Theorem 7.1. Let Mn be a di�erentiable manifold with a tensor �eld of
electromagnetic type and class ~J . Then the following statements are equivalent:

a) The G-structure P de�ned by ~J is integrable;

b) The Nijenhuis tensor of the associated tensor �eld J is zero;

c) There exists a linear torsionless connection which parallelizes J;

d) The structure tensor of P is zero;

e) The Nijenhuis tensor of the tensor �eld Ĵ corresponding to the canonical

prolongation P̂ of P is zero;

f) The Nijenhuis tensor of the complete lift Jc of J is zero; moreover,

g) If G is a J-Lie group, then J is integrable.

When Mn is J-Kaehlerian [10], other conditions can be given.

We note that any linear connection which parallelizes ~J does not exist.

Acknowledgment. The authors would like to express their deep apprecia-
tion to Prof. A. Montesinos for his valuable help.

REFERENCES

[1] D. Bernard, Sur la g�eom�etrie di��erentielle des G-structures, Ann. Inst. Fourier, Grenoble
10 (1960), 151{270.

[2] V. Guillemin, The integrability problem for G-structures, Trans. Amer. Math. Soc. 116
(1965), 544{560.

[3] J. M. Hernando, P. M. Gadea, A. Montesions, G-structures de�ned by tensor �elds of
electromagnetic type, (to appear).

[4] V. Hlavat�y, Geometry of Einstein's Uni�ed Field Theory, P. Noordho�, 1958.

[5] J. Lehmann-Lejeune, It�egrabilit�e des G-structures d�e�nies par une 1-forme 0-d�eformable
�a valores dans le �bre tangent, Ann. Inst. Fourier, Grenoble, 16 (1966), 329{387.

[6] R. S. Millman, Groups in the category of f-manifolds, Fund. Math., 89 (1975), 1{4.

[7] R. S. Mishra, Structures in electromagnetic tensor �elds, Tensor (N.S) 30 (1976), 145{156.



124 Hernando, Reyes, Gadea

[8] A. Morimoto,Prolongations of G-structures to tangent bundles, Nagoya Math. J. 32 (1968),
67{108.

[9] E. Reyes, A. Montesinos, P. M. Gadea, Connections making parallel a metric (J4 = 1)-
structure, Anal. St. Univ. Al. I. Cuza. 28 (1982), 49{56.

[10] E. Reyes, A. Montesinos, P. M. Gadea, (J4 = 1)-Kaehler manifolds|to appear.

[11] E. Reyes, A. Montesinos and P. M. Gadea, Connections partially adapted to a (J4 = 1)-
structure, to appear.

[12] K. Yano, S. Kobayashi, Prolongations of tensor �elds and connections to tangent bundles.
I. General theory, J. Math. Soc. Japan 18 (1966), 194{210.

Departamento de Geometria (Received 27 02 1984)
Facultad de Ciencias, Valladolid and
Instituto Jorge Juan
C.S.I.C., Madrid, Spain.


