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INTEGRABILITY OF TENSOR STRUCTURES OF
ELECTROMAGNETIC TYPE

J. M. Hernando, E. Reyes, P. M. Gadea

Abstract. We study characterizations of the integrability of G-structures defined by tensor
fields of elektromagnetic type.

1. Introduction. In [3] were considered the G-structures defined by a (1,1)
tensor J on a diffenertiable manifold M™ such that

(J2 = )T +4%) =0,

where f,g are C'* functions on M™ nowhere zero. This situation generalizes that
of Hlavaty [4] and Mishra [7]. They consider the so called elektromagnetic tensor
fields (of first class) on a 4-manifold which is the space-time of General Relativity.
In [3] it was proved that the G-structure P defined by such a tensor field J is
identical to the G-structure defined by a (1, 1) tensor field J that satisfies the
same conditions as J but with f = g = 1, an so we have J* = 1.

On the other hand, that situation generalizes also the almost product and
almost complex structures simultaneously. In [9] the family of linear connections
that parallelize J (and an adapted metric also) is given. Connections partially
adapted to such a structure are studied in [11]. In this note we study several
characterizations and conditions of integrability of the (G-stucture defined by the)
tenzor field J.

Thus, we consider the following situation:

Let M" be a differentiable manifold and J a (1,1) tensor field such that:

a) (J2 — f2)(J? + ¢%) = 0, where f,g are C* functions on M" with f,g
nowhere null;

b) The characteristic polynomial of J is (x — f)™ (z + f)" (22 + ¢%)%, where
r1,T2,S are constants greater than or equal to 1 such that ry + ro + 2s = n. Then,
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since J which satisfies a) and b), but with f = g = 1, defines the same G-structure
P as J (not an associated G-structure, but exactly the same P see [3]), we can
characterize the integrability of P in terms of J.

2. Integrability in terms of the Nijenhuis tensor. We denote from now
on by X,Y, ..., vectors fields on M"™. We consider the complementary projection
operators | = (J% +1)/2, I3 = (1 — J?)/2, which verify

Jl=1J; JPl=1, Jls =13J, J’l3 = —ls;

denote by L and L3 the corresponding distributions, and put L = Ly & Lo, where
Ly and L, are distributions corresponding to the projectors l; and l» on L given
by the eigenvalues +1 and —1 of J |,. Let us decompose the Nijenhuis tensor of in
the followig manner:

N(X,Y) = IN(IX,1Y) + IsN(IX,1Y) + N(IX,5Y)
+ N(I3X,1Y) + IN(I5X,15Y) + IsN(IsX, 15Y).

Then we have the following

PROPOSITION 2.1. a) L is integrable iff (VX,Y)IsN(IX,1Y) =0;

b) Ls is integrable iff (VX,Y)IN(IsX,13Y) =0;

c) If L is integrable, the almost product structure defined by J | on each
integral manifold of L is integrable iff VX, Y)N(IX,lY) =0;

d) If Ls is integrable, the almost complex structure defined by J |, on each
integral manifold of L3 is integrable iff (VX,Y)N(I3X,13Y) = 0.

Proof. a) N(IX,1Y) = [JIX, JIY] — JJIX,1Y] — J[IX, JIY] + J2[IX,1Y].
Thus, if L is integrable, each bracket is an element of L and so I3N(IX,lY) = 0.
Conversely, suppose now that I3N(IX,1Y) = 0; then we obtain easily:

IIN(JIX,JIY) + JIsN(JIX, 1Y) + JIsN(IX, JIY)
=3L3[1X,1Y] + I3(N(IX,1Y) - J?[IX,1Y])
=43[IX,IY] + 3N(X,1Y),

and since by the hypothesis IsN(IX,1Y) =0, L is integrable;

b) Analogous to a), if we consider now

IN(JI5X, JI5Y) + JIN (JIsX,15Y) + JIN(I5 X, JIsY);

c) If L is integrable, then J |r induces on each integral manifold of L an
almost product structure. As such a structure is integrable iff its Nijenhuis tensor
is zero, that is, N, (IX,lY) = 0, and since Ny, (IX,lY) = N(IX,lY), we obtain
c);

d) Similar to c). O



Integrability of thensor structures of electromagnetic type 115

Definition 2.2. We say that J is partially integrable iff L and L3 are inte-
grable, and also the almost product and almost complex structure induced by J
on the integral manifolds of L and L, respectively.

Thus J is partially integrable iff N(X,Y) = N(IX,[3Y) + N(3X,1Y).

So, we consider now the condition N(I1X,Il3Y") = 0. Since the Lie derivative
L, J verifies by definition (Ly J)X = J[X,Y] - [JX,Y], we deduce:

a) N(IX,13Y) = J(Liyy J)IX — (Lji,y J)IX;
b) N(l3X,lY) = J(LlyJ)l3X — (leyJ)ng;

and from these expressions it is immediate that:

PRrROPOSITION 2.3. IN(IX,I3Y) = 0 (resp. IsN(IX,I3Y) = 0) for every
XY iff L1,z )l =0 (resp. I3(LizJ)ls =0 for every Z .

COROLLARY 2.4. N(IX,13Y) = 0 iff (Li;zJ)l = l3(lizJ)ls = 0, for every
X,Y, Z.

Now, we have
THEOREM 2.5. J is integrable iff Ny = 0.

Proof. J is integrable iff for every € M™, there exists a heighbourhood U
of # and a coordinate system in U, {z'}, such that the basis {0/9x'}, i=1,... ,n
is adapted in U. That is, J can be expressed as a linear combination of products
0/0z* ® dx’ with constant coefficients, and so, trivially, N = 0.

Conversely, suppose N = 0. By a)and b) of Prop. 2.1, L and L3 are
integrable. Thus, for each x € M™ there exists a chart centered at z, (U, y), with
coorinates {z,y?},i =1,...,r + 7y, a=1,...2s, such that

d/0x' € L, 8/0y" € Ls.

So, in the local basis {0/0z%, 0/0y}, J has a matrix of the from

Ji 0
= J .
=3 5):

that is, J = J}@/E)mi ® dzd + J0/0y* ® dy’. Moreover, | = 8/0x' ® dx?, and
I3 = 0/0y* ® dy®. Thus,

aJt 9 . 9Je 9
Lygyed = —L —  dz’ b~ & dyb.
o/0y J ayc oxt Qar + ayc 8ya ® Y
Hence )
I(L ) = 07} 0 ® d?
o/0y" Oy Ozt

So, Corollary 2.4 implies 8.J}/dy® = 0 (and analogously d.J{' /dz" = 0).
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Consider now the integral manifold L, of L, of coordinates y* = 0. Since
the almost product structure on L, is integrable, there exist coordinate functions
u’ in a neighbourhood of x € L, in L, such that

8/6u’ € Ll, 1=1,...,7r, 8/6u’ S LQ, t=r1+1,...,71 + 7o,
where these fields are considered in the regular submanifold L, NU.
We define new coordinates in a neighbourhood W of z in U: put, for
' eW,
u'z') = u'(p @t (@), .., 2" (2)),0,...,0), g (a") = y* (2).
Then, for the new coordinate system {u’,y~%} we have
0 ou’ 0 . Oxt . d (oul d [0zt
—.:—.—.,dzz d ‘7, h —(—):—(—):
ot oriouw’ T 9w M VN B5a\axi) T 9ge \aw
This is a new coordinate system adapted to L and L3, and we have
—i

—1i a ; —a 6 J
=T — @du — ®@dj’, with —L =0.
J J38u1® U +Jb8g“® 7, wi 37 0

But for the points of coordinates §* = 0 we have by construction (see 2.1)

=i (I, 0
=% )

Hence, in certain neighbourhood of = we also have the same matrix expression
for T,

Similarly, since the structure defined by J in Ls, is almost complex, a change
of coordinates analogous to the previous one gives for 7; the expression

0 —I
I, 0 )

In other words, we have deduced that J is integrable. O

3. Integrability in terms of a linear connection. Now, let V be a
linear connection without torsion on M® and let @ be the (1, 2) tensor field on
M™ defined by Q(X,Y) = {(Vy;y )X + J(Vy, J)X +2J (V)Y }/4.

We define a new connection D by means of the expression
DxY =IVxIX = IVjyls X + 3Vxl3Y — 3V,vlX +1Q(UX,1Y) —13Q(13X,13Y).

It is easily proved that:

i) DxIY =IVxIlY — IV, xlsX +1Q(IX,1lY);
1) DxlsY = 3V xlsY — I3V,vlX — 13Q(I3X,13Y);
i) Dix 1Y =1V xlY +1Q(IX,1Y);
iv) DigxlY = IVi,x1lY —IViyl3X; (3.1)
) Dixl3Y = 13Vixl3Y — I3Vi,yIX;
vi) Digx 13X = 13V, xl3Y — 13Q(1sX,15Y);
vii) Dxl = Dxl3 = 0.

v
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So we have

ProrosiTION 3.1. The torsion T of D has the expression
T(X,Y)=1/4{IN(IY,IX)+ IsN(IsN(I3X,13Y)} — [[I3X,13Y] — [3[IX.IY].
Proof. Immediate from the expression for D and @, applying that V is
torsionless, and proving that Q(X,Y) —Q(Y,X) =N, X)/4 O
From that we obtain

COROLLARY 3.2. (VX,V)T(IX,I5Y) =0.
We now prove

LeEmMA 3.3. a) The distribution L is integrable iff IsT'(1X,1Y) = 0;

b) The distribution Ls is integrable iff IT(I3X,13Y) = 0;

c) If L is integrable, then the almost product structure induced by J | on
each integral manifold of L is integrable iff IT(IX,1Y) =0;

d) If Ls is integrable, then the almost complex structure induced by J |1, on
each integral manifold of Ls is integrable iff 13T (I13X,13Y) =0

e) J is partially integrable iff T(X,Y) = 0;

f) IN(JIX,lY) = IN(IX, JIY); 9) IT(JX,IY) =IT(IX,JY);
h) l3N(Jl3X, l3Y) = l3N(l3X, Jl3Y) l) (JX l3 ) = l3T(l3X, JY),
3) (D x NsY =0; k) (Dijx J)IY = 0.

Proof . a) If suffices to prove I3T(1X,1Y) = —I3[l X, 1Y];

b) analogous to a); c) it suffices to consider IT'(IX,lY) = IN(IY,1X)/4 and
a), ¢) of Prop. 2.1; d) it is deduced from I3T(I3X,[3Y) = 3N (I3X,13Y) /4, and b),
d) of Prop. 2.1.;

e) from Cor. 3.2 we obtain T(X,Y) = T(IX,lY) + T(I3X,I3Y). If J is
partially integrable, from a) and c) we deduce T'(IX,lY) = 0 and from b) and
d) that T(I3X,13Y) = 0. Hence T(X,Y) = 0. Conversely, T(X,Y) = 0 implies
T(IX,1Y) = T(13X,15Y) = 0 and thus [T(IX, 1Y) = T(IX,1Y) = IT(I5X,15Y) =
1T (13X, 15Y) = 0.

From these equalities and from a), b), c), d) we deduce that J is partially
integrable; f) the proof is immediate and moreover, as a consequence, we obtain
IN(JIX, JIY) = IN(IX,1Y); g) IT(JX,1Y) = IN(IY, JIX)/4 and IT(JX,IX) =
IN(JIY,1X)/4, and from f) we obatin the result; h) the proof is analogous to that
of f) and we deduce here I3N (JI3X, JI3Y) = —I3N(I3X,13Y);

i) we have IsT(JX,15Y) = IsN(JlsX,15Y)/4 and 15T(IsX,JY) = 3N
(13X, JI3Y") /4, and the conclusion follows from h);

j) from (3.1), vi) we have Dy, x JI3Y = I35V, xJI3Y — [3Q(l3X, JI3Y) and
IDxlsY = Ji3Vi,x13Y — I3JQ(I3X,13Y). Substracting we obtain

(D x NI3Y =13(Vi,x NIsY + 3{J(V i,y J)IsX + T3 (Vi x J)Is X
+ 2T (Vigx NI3Y — (Vv )X — J(Vy,x J) s X
—2J(Vix) Y} /4 = I3(Vi,x NIsY — I3(Vi,x )3 =
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k) analogous to that of j), by using (3.1), iii). O

THEOREM 3.4. Jis integrable iff there exists a linear conection without torsion
that parallelzes J. If J is integrable, then D gives an explicit example of such a
connection.

Proof. Suppose J integrable. Then for the earlier connection D we have:
1) D is torsionless, and 2) DJ = 0. Indeed, if J is integrable then it is partially
integrable and, from e) of Lemma 3.3. we obtain 1). On the other hand, if J is
integrable, N(X,Y) =0, and since from (3.1), v) we have

(DJli)l3Y + (DIXJ)JI3Y = l3N(lX, l3Y) =0,

we deduce
(Dyx NsY = =(Dix J)J15Y. (3.2)

Substituting Y by JY we have
(Dyix J)3JY = —(DyixJ)J2sY = (Dix J)5Y, (3.3)
and, if in (3.2) we substitute X by JX, we have
(Dyix )Y = —(Dy2x )Y = —(DyJ)l5Y. (3.4)
From (3.3) and (3.4) we deduce
(D;x J)lsY = 0. (3.5)

From (3.1), iv) we have IN(I3X,lY) = (Dy,x J)IY + (Di;xJ)JIY; if J is
integrable we obtain analogously

(Diyx J)IY = 0. (3.6)
But in j) and k) of Lemma 3.3. we have
(Dlst)l3Y =0 and (Dlxj)ly =0 (37)

Hence, from (3.5) (3.6) and (3.7) follows 2).

Conversly, suppose now that there is a linear connection V without torsion
such that V.J = 0. If we consider () from V as before, we see that ) = 0. But
in the proof of the Prop. 3.1 we have seen that Q(X,Y) — Q(Y,X) = N(Y, X)/4;
that is, J is integrable.

Remark. Asis well known, Lehmann-Lejeune [5] proves that, for 0-deformable
(1,1) tensor fields, the integrability is equivalent to the existence of a torsionless
structural local connection. In our case, we have a global connection and we also
give its explicit expression when J is integrable.

4. Integrability in terms of the structure tensor. We have now at
disposal two criteria of integrability of the G-structure P defined by J. The first
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one in terms of the Nijenhuis tensor of the field .J, the second one in terms of
a linear connection. A third criterion is that which expresses the integrability in
terms of the Guillemin stucture tensors [2].

The field J is not 0-deformable, but the associted field J, which defines the
same structure P, is 0-deformable and so, we can anew characterize the integra-
bility of P in terms of J; but from the results of Lehmann-Lejeune [5] it suffices
to consider, in this case, the Chern-Ehresmann-Bernard tensor [1] and have the
equivalence of the integrability with nullity of the 1-st structure tensor of P, as we
express in the final theorem.

5. Integrability in terms of prolongations and complete lifts. Now,
we consider of the one hand the complete lift J¢ of J in the sense of Yano-Kobayashi
[12], whic is a (1,1) tensor field on TM™ defined from J and, on the other hand,
the canonical prolongation J of J in the sense of Morimoto [8], which is also a
(1,1) tensor field on TM™. Firstly, we have the following:

PROPOSITION 5.1. The canonical prolongation to TN™ of the (J* = 1)-

structure J is a (J* = 1)-structure J which coincides with the complete lift J¢ of
J.

Proof . The structural group G correspoding to J (and J) is that of matrices
of the form [3]

where A € Gl(r,R), B € Gl(r3,R), C +iD € Gi(s,C), r1 +1r2+2s =n.
If we denote G the structural group of the canonical prolongation P of P defined
by J (and J), it has as elements the ¢ obtained by means of

where g denotes the Lie algebra of G, X the translated R,-1,Y, for a certain
Y € T,G, and j, the imbedding j, : TGl(n,R) = GI(2n,R).

More precisely,
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0
0
0B 0
¢ D
g 0 0 D c
(o X1 — _
in(g XD [Xg g] — T (5.1)
o8 % jo B °©
vy —8 {C —D
0 0
3 v D C
since
M o] 0 MA 0|
0 0
Yo |0 N B 0 NB
£= _._;_N,’P —o || c —p| |  |pc—oDp —-PD—QC
o P p ¢ QC+PD —QD+PC

where M € M(r;;R), N € M(ro;R), P+iQ € M(s,C).

It is immediate that j,({g, X}), belongs to the matrix group GI(2r1,R) x
Gl(2r3,R) x Gl(2s,C), by means of a convenient rearrangement of the boxes of
the matrix (5.1). Hence, we have the structural group od a (J* = 1)-structure on
TM™.

On the other hand, for a given local coordinate system {U,z!,...,z"} on
M™, and a section ¢ of the principal bundle of frames FM™ on U , expressed as

o(z) = ( ,zn:zf;(x)%

1=

,...), zeU,
x

Morimoto [8] proves that & = jymn - To (where jpn is the canonical embedding
Jamn : TEM™ — FTM™), is a section of FT'M™ on TU, which can be expressed as
" doi(z) , O

(N~ 0 = 0
a(;y oxt x):(“";%’("’)axi z A= ozt Y oy’

11— 1,k=
n .
ZO’;(.Z’) X,...)
i=1

where {z!,... 2", y',... y"} is the local coordinate system induced in TU, and

n .
X = Zyl 88Ii € TU
i=1 T

X...

0
oy’

We now consider the diagram
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J
FV < [1 j— FTM"

[ 1

P TP

o ln To l Tn , =j *To
Mﬂ
MY ™"
with the explained notations. Let again {U,z!,... 2"} a local coordinate system

on M", and o a section of the G-structure P on U ; then 6 = jyn -To is a section
of the canonical prolongation P of P, since

6(TU) = jagn - To(TU) C jae (T(o(U)) C jun (TP) = P.
Now, let Jo : R® — R" be an automorphsm such that J3 = 1.
From the diagram
T,M» —L= T,

a(xﬁ %(z)

R" —", R"
we define J, as J, = o(x) - Jo - o(z)7L.
Then J : & ~— J, is the (J* = 1)-structure associated to P globally defined.
Indeed:
a) J! = 1. Immediate from Ji = 1;
b) globaly defined: If x € UNU’, where U, U’ are coordinate neghbourhoods
and o' is a section of P on U’, then J, = ¢'(z) - Jo - o'(z) "1, but since

o'(z) =g(x)-o(z), g(x) €C.

we deduce

Ty =g(@)-o(x) - Jo-o(x)" - g(x)™" = g(x) - Jp - g(z)".
We now consider T'Jy : TR™ — TR™. Since

Jo 0}

TJO:[O Jo

we have (T.Jy)* =1, and we define

A~

J(X)=6(X)-TJy-6(X)"", for every X € TU.

It is clear that J* = 1, and J is the (J* = 1)-structure on T'M™ canonical
prolongation of J, since ¢ = jamn - To.
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On the other hand, we can choose as a basis of Tx TM" the set

o oy 0 0
Ox! I x’ 7 Ozn xJ’

X’8_y1‘x"" " oy"
Then, using the earlier expressions for ¢ and T'.Jy, we obtain

j(f)z&(w)-TJg-&(x)—lz{U(m) 0 HJO ng(l«) 0 ]1

do(x) o(x)|| 0 Jo||do(x) o(x)
1 Je 0
0Ty T |’
which is precisely the formula of the complete lift J¢ of J (see [12]), being

t, 0!
— E k J

]

O

But Morimoto [8] proves that a G-structure P is integrable if and only if the
canonical prolongation P is integrable; hence we obtain.

PROPOSITION 5.2. Let (M",J) be a (J* = 1)-manifold. Then the following
statements are equivalent:

a) The G-structure P defined by J is integrable;

b) The Nijenhuis tensor of the tensor J corresponing to the canonical prolon-
gation P of P is zero;

c) The Nijenhuits tensor of the complete lift J¢ of J is zero.

6. J-Lie groups. Now, we consider a sufficient condition in order to a
(j* = 1)-structure be integrable.

Let (My,Ji) and (Ma,J2) be two (J* = 1)-manifolds. We say that a dif-
ferentiable map f : My — M, is a J-map if and anly if the following diagram is
commutative

T, M, —L Ty My
J1l l]z for every z€Mj.
T, My —T Ty My

Definition 6.1. We call J-Lie group a Lie Group G with a (J* = 1)-structure
J such that the usual translations L, and R, are J-maps, for every g € G.

Thus, we have
ProrosiTION 6.2. If G is a J-Lie group, then J is integrable.

Proof. Since L, and R, are J-maps, we have ad g-J = J- ad g.
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In particular for g =exp tX, X € g, t € R, we have
exp(AdtX) - JY = J(exp(AdtX)Y), forevery ¥V €g. (6.1)

Moreover, we obtain

exp(AdtX)JY = JY +t[X,JY] + *[X,[X, JY]]/2 + - -
Jexp(AdtX)Y = JY +tJ[X,Y] + 2 J[X,[X,Y]]/2+ - .

Hence, from (6.1) and taking the limit for ¢ — 0 we deduce [X, JY] = J[X, Y],
and also J[X,Y] = —-JY,X] = -[Y,JX] =[JX,Y].
Thus, it is immediate N(X,Y) =0, X,Y € g. O

7. Characterizations of the integrability. Finally, according to the
earlier results we can give the following:

THEOREM 7.1. Let M™ be a differentiable manifold with a tensor field of
electromagnetic type and class J. Then the following statements are equivalent:

a) The G-structure P defined by J is integrable;

b) The Nijenhuis tensor of the associated tensor field J is zero;

c) There exists a linear torsionless connection which parallelizes J;

d) The structure tensor of P is zero;

e) The ]Yijenhuis tensor of the tensor field J corresponding to the canonical
prolongation P of P is zero;

f) The Nijenhuis tensor of the complete lift J¢ of J is zero; moreover,

g) If G is a J-Lie group, then J is integrable.

When M™ is J-Kaehlerian [10], other conditions can be given.

We note that any linear connection which parallelizes .J does not exist.
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