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THE GENERAL LINEAR EQUATION ON VECTOR SPACES

Jovan Ke�cki�c

Abstract. General solution of linear equation of the form (1) and (3) are obtained by
means of the generalized inverse functions. The obtained theorems are applied to equations on
near-rings, linear functionals, matrix, di�erential and functional equations.

1. General theorems

Let X and Y be nonempty sets and let f : X ! Y be a surjection. The
existence of a function g : Y ! X such that (8y 2 Y )f(g(y)) = y is a well-known
equivalent of the Axiom of Choice, due to Bernays [1] (see also [2]). By a slight
modi�cation of the argument, we prove the following

Theorem 1. Suppose that X and Y are nonempty sets, and let a 2 X;
b 2 Y . If f : X ! Y and f(a) = b, then there exists a function g : Y ! X such

that:

(i) fgf = f , i.e. (8x 2 X)f(g(f(x))) = f(x);

(ii) g(b) = a.

Proof . If f(X) is a singleton, then f(X) = fbg and the function g : Y ! X
de�ned by (8y 2 Y )g(y) = a satis�es (i) and (ii).

If f(X) contains more than one element, let Xy = fx j f(x) = yg, where
y 2 f(X). Then Xy 6= ?; f(X)nfbg 6= ?, and according to the Axiom of Choice
there exists a function G : f(X)nfbg ! XnXb such that G(y) 2 Xy. The function
g : Y ! X de�ned by

g(y) =

8><
>:
G(y); y 2 f(X)nfbg

a; y = b

H(y); y 2 Y nf(X)

where H : Y nf(X)! X is an arbitrary function (for example, H(y) = a, for every
y 2 Y nf(X)) satis�es the conditions (i) and (ii).
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Indeed, (ii) is trivial. To prove (i) notice that for arbitrary x 2 X we have

g(f(x)) =

(
G(f(x)); x 2 XnXb(, f(x) 6= b)

a; x 2 Xb (, f(x) = b)

and so

f(g(f(x))) =

(
f(x); f(x) 6= b

a; f(x) = b
= f(x)

which completes the proof.

We now apply Theorem 1 to the general linear equation on groups. Namely,
suppose that (G1; �) and (G2; Æ) are groups whose neutral elements are denoted
by e1 and e2, respectively. If f : G1 ! G2 is a homomorphism, then f(e1) = e2,
and hence, according to Theorem 1 there exists a function g : G2 ! G1 such that
fgf = f and g(e2) = e1.

Theorem 2. Consider the equation in x:

(1) f(x) = e2

The general solution of the equation (1) is given by:

(2) x = t � g(f(t));

where t 2 G1 is arbitrary and u denotes the inverse of u(2 G1 or G2).

Proof . The proof of this statement is straight forward. Namely, since f is a
homomorphism, from (2) follows

f(x) = f(t � g(f(t)) = f(t) Æ f(g(f(t))) = f(t) Æ f(g(f(t))) = f(t) Æ f(t) = e2;

which means that (2) is a solution of (1). Conversely, suppose that x0 is a solution
of (1), i.e. that f(x0) = ea. Then, putting t = x0 into (2) we get

x = x0 � g(f(x0)) = x0 � g(e2) = x0 � e1 = x0 � e1 = x0:

In other words, the solution x0 of (1) is obtained from (2) by putting t = x0, which
means that (2) is the general solution of (1).

Consider now the nonhomogeneous equation in x:

(3) f(x) = c

where c 2 G2 is given. The equation (3) has a solution if and only if

(4) f(g(c)) = c

In that case the general solution of (3) is given by

(5) x = t � g(f(t)) � g(c)
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where t 2 G1 is arbitrary. Indeed, if (3) has a solution, then from (3) follows
g(f(x)) = g(c), and again f(g(f(x))) = f(g(c)). But fgf = f which together with
(3) and the last equality implies (4). Conversely, if (4) holds, then g(c) is clearly a
solution of (3). The fact that (5) is the general solution of (3) is easily veri�ed.

Remark . If g is the inverse function of f then (1) and (3) have unique
solutions, namely: e1 and g(c), respectively.

Problem. According to Theorem 1, for a homomorphism f : G1 ! G2 there
exists a function g : G2 ! G1 such that fgf = f and g(e2) = e1. What additional
conditions, if any, are needed to ensure that g is also a homomorphism?

2. The case of vector spaces

If V1 and V2 are vector spaces over a scalar �elds S and if f 2Hom(V1; V2),
i. e. f : V1 ! V2 is a homomorphism, then there exists a function g : V2 ! V1 such
that fgf = f and g(0) = 0, and we obtain corresponding conclusions about the
equations f(x) = 0 and f(x) = c.

However, in this case it is possible to obtain the form of the general solution
of those equations. Namely, we have

Theorem 3. If f 2Hom(V1; V2), the general solution of the equation f(x) = 0
has the form x = h(t), where h 2Hom(V1; V1) and t 2 V1 is arbitrary.

Proof . We �rst prove that there exists a homomorphism g : f(V1)! V1 such
that fgf = f . Indeed, since f(V1) is a vector space, it has a basis B = fb1; b2; . . . g.
Moreover, bi 2 f(V1) and so the set Xi = fx j f(x) = big is not empty. Hence,
according to the Axiom of Choice, there exists a function g : B ! V1 such that

g(bi) = gi 2 Xi. For arbitrary y =
n(y)P
k=1

�kbk 2 f(V1) de�ne g(y) =
n(y)P
k=1

�kgk. The

function g : f(V1) ! V1 de�ned in this way is clearly a homomorphism and it is
easily veri�ed that for all x 2 V1 we have f(g(f(x))) = f(x). Hence, the general
solution of f(x) = 0 is x = t�g(f(t)) = (i�gf)(t), where i : V1 ! V1 is the identity
mapping and t 2 V1 is arbitrary. Since h = i � gf 2Hom(V1; V1), the theorem is
proved.

Therefore, the general solution of the linear equation f(x) = 0 is a linear func-
tion of an arbitrary element t. However, in order to obtain the solution explicitly.
it is necessary to construct the function g.

3. Applications

We now investigate some cases in which the function g can be determined.

3.1. Linear equations on near-rings. Suppose that (P;+; �) is a near-ring
(i. e. the group (P;+) need not be commutative). The function f : P ! P de�ned
by f(x) = axb, where a; b 2 P are �xed, is a homomorphism.
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If a; b are regular elements of P , i. e. if there exist a; b 2 P , such that aaa =
a; bbb = b, then the function g : P ! P de�ned by g(x) = axb is such that
fgf = f . Hence, the general solution of the equation axb = 0 is: x = t � aatbb.
The nonhomogeneous equation axb = c has a solution if and only if aacbb = c; in
that case, the general solution is x = t � aatbb + acb. For instance, the general
solution of axb = ab is: x = t� aatbb+ aabb, where t 2 P is arbitrary.

More general equations, together with applications to matrix equations are
considered in [3].

3.2. Linear functionals. Let V be a vector space overr the �eld S, let
f : V ! S be a linear functional on V and consider the equation in x :

(6) f(x) = 0

We suppose that there exists x0 2 V such that f(x0) 6= 0; otherwise (6) holds
for all x 2 V .

For the function g : S ! V de�ned by g(s) = sx0=f(x0) it is easily veri�ed
that fgf = f . Hence, the general solution of (6) is x = t � x0f(t)=f(x0), where
t 2 V is arbitrary. Moreover, the general solution of the nonhomogeneous equation
f(x) = c is: x = t+ (c� f(t))x0=f(x0), where t 2 V is arbitrary.

Various applications of this result, particularly to integral equations, are given
in [4].

3.3. The function f satis�es a polynomial equation. Let f : V ! V ,
where V ia a vector space over a �eld S and suppose that the function f satis�es
an equation of the form:

(7) �nf
n + �n�1f

n�1 + � � �+ �1f + �0i = 0;

where �0; . . . ; �n 2 S; i : V ! V is the identity mapping and fk is the k-th iterate
of f . We have the following conclusions:

(i) If �0 6= 0, then the function g de�ned by

g = ���10 (�nf
n�1 + �n�1f

n�2 + � � �+ �1i)

is the inverse of f .

(ii) If �0 = 0; �1 6= 0, then the function g de�ned by

g = ���11 (�nf
n�2 + �n�1f

n�3 + � � �+ �2i)

is such that fgf = f .

Hence, in those cases it is possible to write down the general solutions of the
equations f(x) = 0 and f(x) = c.

Remark . If �0 = �1 = 0, then x = �nf
n�1(t) + � � � + �2f(t), where t 2 V

is arbitrary, is clearly a solution of the equation f(x) = 0, but examples can be
constructed to show that this solution need not be general.
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In particular, if f can be written in the form

(8) f(x) =

mX
�=1

�1�A�(x) (�1� 2 S);

where the linear functions A1; . . . ; Am : V ! V form a semigroup, then

(9) fk(x) =
mX
�=1

�k�A�(x) (k = 1; . . . ;m);

and eliminating the A�(x)'s between (8), (9) and i(x) = x, we arrive at an equation
of the form (7).

This method was applied in [5] to the linear matrix equation

A1XB1 + � � �+AmXBm = 0:

3.4. Di�erential equations. This example shows how the existing theory of
linear di�erential equations can be interpreted within the framework of the general
method given here. Namely, it can be shown [6] that the di�erential equation

y00 + p(x)y0 + q(x)y = 0

is equavilent to the equation

y �
W (y;  )

W (';  )
'�

W ('; y)

W (';  )
 = 0;

where ' and  are linearly independent solutions of (10) andW (u; �) = u0��u�0.
However, for the function f de�ned by

f(y) = y �
W (y;  )

W (';  )
'�

W ('; y)

W (';  )
 

we have f2 = f , and hence the general solution of f(y) = 0, i. e. the general solution
of (10) is

y = t� f(t) (t arbitrary twice di�erentiable function) i.e.

y =
W (t;  )

W (';  )
'+

W ('; t)

W (';  )
 :

Since it can be shown that the expressions W (t;  )=W (';  ) and W ('; t)=
W (';  ) do not depend on x (provided that p has a primitive function), the last
expression takes the familiar form: y = C1'+C2 , where C1 and C2 are arbitrary
constants.

This method of approach to linear di�erential equations has certain advan-
tages over the standard method. They are discussed in [6].
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3.5. Equations on algebras. Suppose that V is a commutative algebra,
and cosider the equation in x 2 V :

(11) a11A1x+ � � �+ a1nAnx = 0;

where a11; . . . ; a1n 2 V; A1; . . . ; An : V ! V are linear functions with the proper-
ties:

(i) G = fA1; . . . ; Ang is a group of order n;

(ii) Ai(�Ajx) = Ai(�)Ai(Ajx) for all x; � 2 V and i; j = 1; . . . ; n, Then, if
we put

(12) f(x) =

nX
�=1

a1�A�x;

it again follows that

(13) fk(x) =

nX
�=1

ak�A�x (k = 1; . . . ; n);

and again eliminating the A�x's between (12), (13) and i(x) = x(i 2 G), we arrive
at an equation of the form

anf
n + an�1f

n�1 + � � �+ a1f + a0i = 0:

Though the coeÆcients a0; . . . ; an belong to V , it can be shown, by a technique
similar to Pre�si�c's [7] that f(akf

k) = akf
k+1, and so the function g can be formed

analogously as in 3.3. The fact that f(akf
k) = akf

k+1 corresponds to the condition
\compatible with the group G" which appears in [7].

Remark . The equation (11) can be treated in the same way as Pre�ci�c [7]
solved its special case, the equation for ' : E ! K

a1(x)'(g1x) + � � �+ an(x)'(gnx) = 0;

where g1; . . . ; gn : E ! E form a group of order n . In this case E is a nonempty
set, K is �eld and a1; . . . ; an : E ! K.

Example. As an example, we solve the following functional equation

(14) a(x)'(x) + b(x)'(�x) = 0;

where a; b : R ! R are given, and ' : R ! R is the unknown function. Let
f : RR ! RR be de�ned by

(15) f('(x)) = a(x)'(x) + b(x)'(�x):

Then

f2('(x)) =(a(x)2 + b(x)b(�x))'(x))(16)

+(a(x)b(x) + a(�x)b(x))'(�x);
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and elimination of '(x) and '(�x) between (15), (16) and i('x) = '(x) leads to
the equation

(17) f2 � (a(x) + a(�x))f + (a(x)a(�x) � b(x)b(�x))i = 0:

If a(x)a(�x) 6= b(x)b(�x); f has its inverse f�1 and '(x) � 0 is the only
solution of (14). Suppose that a(x)a(�x) = b(x)b(�x) and that a(x) + a(�x) 6= 0.
Then (17) reduces to

f2 � (a(x) + a(�x))f = 0;

and the function g : RR ! RR de�ned by

g = (a(x) + a(�x))�1i

is such that fgf = f , which is easily veri�ed. Hence, the general solution of (14) is

'(x) = t(x) �
a(x)t(x) + b(x)t(�x)

a(x) + a(�x)

i. e.

'(x) =
a(�x)t(x) � b(x)t(�x)

a(x) + a(�x)
(t : R! R is arbitrary):

* * *

The research which lead to [3]|[6] and �nally to this paper, was initiated
mainly by [7] and [8].
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