BASES FROM ORTHOGONAL SUBSPACES OBTAINED BY EVALUATION OF THE REPRODUCING KERNEL

Dušan Georgijević

Abstract. Every inner operator function θ with values in B(E, E), E - a fixed (separable) Hilbert space, determines a co-invariant subspace $H(\theta)$ of the operator of multiplication by z in the Hardy space H_E^2 . "Evaluating" the reproducing kernel of $H(\theta)$ at "U-points" of the function θ (U is unitary operator) we obtain operator functions $\gamma_t(2)$ and subspaces $\gamma_t E$. The main result of the paper is: Let the operator $I - \theta(z)U^*$ have a bounded inverse for every z, |z| < 1. If $(1 - r)^{-1}\Re\varphi(rt)$ for definition of φ see (1) is uniform bounded in $r, 0 \leq r < 1$, for all t, |t| = 1, except for a countable set, then the family of subspaces $\gamma_t E$ is orthogonal and complete in $H(\theta)$. This generalizes an analogous result of Clark [3] in the scalar case.

1. Introduction. Throughout this paper we denote by D the unit disc |z| < 1 and by T the unit circe |z| = 1 of the complex plane C. Given a separable Hilbert space $E(E \neq \{0\})$, let H_E^2 be the standard Hardy space of analytic E-valued functions on D. (See [1] or [2] for general references.) Writting inner products and norms in H_E^2 we will omit designation of the space in the index. The space H_E^2 possesses a so-called reproducing kernel. This is the function $k_w(z) = (1 - z\bar{w})^{-1}$, $w \in D$, $z \in D$, with the following properties: $k_w a \in H_E^2$, $w \in D$, $a \in E$, $(k_w a = k_w(\cdot) a)$ and $(f, k_w a) = (f(w), a)_E$, $f \in H_E^2$, $w \in D$. If θ is an inner operator function [1] (defined on D and with values in B(E, E)), then let $H = H(\theta) = H_E^2 \ominus \theta H_E^2$. The reproducing kernel for the space H is the function $K_w(z) = (1 - z\bar{w})^{-1}(I - \theta(z)\theta(w)^*)$, $w \in D$, $z \in D$, where by I is denoted the identity mapping in E.

If U is a unitary operator in E, then we will also consider the following operator functions:

(1)
$$\varphi(z) = \varphi_U(z) = (I + \theta(z)U^*)(I - \theta(z)U^*)^{-1},$$

 $z \in D$, (if $(I - \theta(z)U^*)^{-1}$ exists) and

(2)
$$\gamma_t(z) = \gamma_U(t, z) = (1 - z\overline{t})^{-1} (I - \theta(z)U^*),$$

AMS Subject Classification (1980): Primary 46 E 40.

 $t \in T$, $z \in D$. In the scalar case (dimE = 1) U is a number of modulus 1 and U^* shall be replaced by \overline{U} .

In [3] Clark considered orhogonal sets in H obtained by evaluation of the kernel $K_w(z)$ on T, in the case dim E = 1. The purpose of this paper is to generalize the criterion for completeness of such orhogonal sets which is contained in Theorem 7.1 of [3].

2. Bases from subspaces. Let T_U be the set of all points $t \in T$ such that $\gamma_t a \in H$ for some $a \in E$, $a \neq 0$. Given $t \in T$, we denote by $\gamma_t E$ the closure of the set of all functions of the form $\gamma_t a$, $a \in E$, lying in H. All such subspaces form a family which we will denote by $G_U = \{\gamma_t E \mid t \in T_U\}$. The problem we are interested in is: when does the family G_U form an orhogonal basis from subspaces of H, i. e. when does $\gamma_t E \perp \gamma_s E$, $t \neq s$ and $Cl(\cup \gamma_t E, t \in T_U) = H$ hold? (Cl=closure).

We begin with some lemmas.

LEMMA 1. The mapping $f \to f(w)$ is a bounded operator from H_E^2 to E for every $w \in D$.

Proof. The statement follows from the inequality

 $||f(w)||_E = \sup\{|(f, k_w a): a \in E, ||a|| \le 1\} \le ||f|| (k_w(w))^{1/2}, f \in H_E^2, w \in D.$

Note that it follows by lemma 1. that if the operator $I - \theta(z)U^*$ has a bounded inverse for at least one $z \in D$ then every function in $\gamma_t E$ has the form $\gamma_t a, a \in E$.

LEMMA 2. Let H_1 and H_2 be Hilbert spaces with (scalar) reproducing kernels [4], $K_w^1(z)$ and $K_w^2(z)$, $w \in D$, $z \in D$. If there exists a function h (from D into C) such that $h(z) \neq 0$, $z \in D$, and $K_w^2(z) = \overline{h(w)}h(z)K_w^1(z)$, $w \in D$, $z \in D$, then multiplication by h is an isomorphism of spaces H_1 and H_1 .

Proof. We establish the equality

(3)
$$(hf, hg)_2 = (f, g)_1, \ f \in H_1, \ g \in H_1,$$

first in the case when $f = \overline{h(w)}K_w^1$, $w \in D$, and $g = \overline{h(v)}K_v^1$, $v \in D$: $(hf, hg)_2 = K_w^2(v) = (f,g)_1$. By linearity it follows that (3) hodts also when f and g are linear combinations of functions of the form $\overline{h(w)}K_w^1$, $w \in D$. The same conclusion follows by continuity of the inner product and by completeness of the set $\{\overline{h(w)}K_w^1 \mid w \in D\}$ in H_1 also when f and g are arbitrary functions in H_1 . Thus multiplication by h preserves the inner product. Since the set $\{K_w^2 \mid w \in D\}$ is complete in H_2 , $hH_1 = H_2$, i. e. multiplication by h is an isomorphism of spaces H_1 and H_2 .

LEMMA 3. Let θ be a scalar inner function and $t \in T$. Then the following are equivalent

(a) $\gamma_t \in H$ for some complex number U of modulus 1,

94

- (b) the limit $\lim_{r\to 1^-} K_{rt}$ exists in the H-norm,
- (c) $||K_{rt}||$ is bounded for r < 1.

Proof. (a) \Rightarrow (b). If $\gamma_t \in H$ for some U, |U| = 1, then every function $f \in H$ has a nontangential limit f(t) at t and the functional $f \to f(t)$ is bounded [3]. By the existence of the limit $\lim_{r\to 1^-} \gamma_t(rt) = \lim_{r\to 1^-} (1\theta(rt)\overline{U})(1-r)^{-1}$ it follows that $\lim_{r\to 1^-} \theta(rt) = U$ and that $\lim_{r\to 1^-} K_w(rt) = \overline{\gamma_t(w)} = (K_w, \gamma_t), w \in D$. This means that $K_w(t) = (K_w, \gamma_t), w \in D$, so $f(t) = (f, \gamma_t)$ for every $f \in H$. In particular

$$\lim_{r \to 1^{-}} (1 - \theta(rt)\overline{U})(1 - r)^{-1} = \lim_{r \to 1^{-}} \gamma_t(rt) = \|\gamma_t\|^2.$$

This implies that

$$K_{rt}(rt) = (1 - \theta(rt)\overline{U})(1 - r^2)^{-1} + \theta(rt)\overline{U}(1 - \theta(rt)\overline{U})(1 - r^2)^{-1}$$

tends to $\|\gamma_t\|^2$ as $r \to 1-$.

Thus $||K_{rt} - \gamma_t||^2 = K_{rt}(rt) - \gamma_t(rt) - \overline{\gamma_t(rt)} + ||\gamma_t||^2 \to 0$, as $r \to 1-$, i. e. (b) holds. (b) \Rightarrow (c) is clear.

(c) \Rightarrow (a). Let θ have the representation $\theta(z)=\nu B(z)S(z),\;z\in D,$ where $\mid\nu\mid=1,$

$$B(z) = \prod_{k=1}^{l} b_k(z) = \prod_{k=1}^{l} |z_k| / z_k(z_k - z)(1 - z\overline{z_k})^{-1},$$

 $z \in D$, with $z_k \in D$ for k = 1, 2, ..., l $(1 \le l \le \infty; |z_k| / z_k = 1, \text{ if } z_k = 0)$ (if θ has no zeros then $B(z) \equiv 1$), and

$$S(z) = \exp\left(-\int_0^{2\pi} (s+z)(s-z)^{-1} d\mu(x)\right), \ z \in D, \ (s = e^{ix}),$$

where μ is a finite, non-negative singular measure on T. From boundedness of $||K_{rt}||^2 = K_{rt}(rt)$ and from $|B(rt)| \ge |\theta(rt)|$ and $|S(rt)| \ge \theta(rt)|$ it follows that $(1 - |B(rt)|^2)(1 - r^2)^{-1}$ and $(1 - |S(rt)|^2)(1 - r^2)^{-1}$ are bounded. Since

$$(1 - |B(rt)|^{2})(1 - r^{2})^{-1} = (1 - |z_{1}|^{2}) |1 - rt\overline{z_{1}}|^{-2} + \sum_{k=1}^{l} \prod_{j=1}^{k-1} |b_{j}(rt)|^{2} (1 - |z_{k}|^{2}) |1 - rt\overline{z_{k}}|^{-2} \rightarrow \sum_{k=1}^{l} (1 - |z_{k}|^{2}) |1 - \overline{t}z_{k}|^{-2} \text{ as } r \rightarrow 1 -,$$

it follows that

(4)
$$\sum_{k=1}^{l} (1-|z_k|^2) |1-t\overline{z_k}|^{-2} < \infty.$$

Georgijević

Since $|S(rt)|^2 = \exp\left(-2(1-r^2)\int_0^{2\pi} |s-rt|^{-2} d\mu(x)\right)$, it follows from boundedness of $(1-|S(rt)|^2 (1-r^2)^{-1}$ that $\int_0^{2\pi} |s-rt|^{-2} d\mu(x)$ is bounded for r sufficiently near to 1, which gives

(5)
$$\int_{0}^{2\pi} |s-t|^{-2} d\mu(x) < \infty$$

Now, (4) and (5) impply that $\gamma_t \in H$ for some U, |U| = 1, [3]. This completes the proof.

Remark 1. Let $\Re \varphi(rt)(1-r)^{-1}$ be bounded, $t \in T(\varphi = \varphi_1)$. Then $||K_{rt}||$ is bounded also. This is evident from the relation

$$K_{rt}(rt) = \Re \varphi(rt)(1-r^2)^{-1} | 1-\theta(rt) |^2.$$

LEMMA 4. Let the operator $I - \theta(z)$ have a bounded inverse for every $z \in D$ and let $\Re \varphi(rt) \to 0$, $r \to 1-$, $(\varphi = \varphi_I)$ (at least in the weak operator convergence) for a. e. $t \in T$. Fix $a \in E \setminus \{0\}$ and put $\varphi_a(z) = (\varphi(z)a, a)_E$, $z \in D$. Then the function $\theta_a(\varphi_a - 1)(\varphi_a + 1)^{-1}$ is a (scalar) inner function and the corresponding space $H_a = H(\theta_a)$ is isometrically isomorphic to the subspace Ka of H generated by functions of the form $K_w(z)(I - \theta(w)^*)^{-1}a$, $w \in D$. An isomorphism Φ from Ka to H_a is given by $\Phi f(z) = (1 - \theta_a(z))((I - \theta(z))^{-1}f(z), a)_E$, $z \in D$, $f \in Ka$.

Proof. Since $\|\theta(z)\| \leq 1$, $z \in D$, and

$$\Re\varphi(z) = (I - \theta(z))^{-1} (I - \theta(z)^* \theta(z)) (I - \theta(z)^*)^{-1},$$

it follows that $\Re \varphi(z) \ge 0$ and $\Re \varphi_{\alpha}(z) \ge 0$, which implies $|\theta_a| \le 1, z \in D$. Since $\Re \varphi(rt) \to 0, r \to 1-$, for a. e. $t \in T$, it follows that the same holds for $\Re \varphi_a$ and so radial limits of θ_a have modulus 1 for a. e. $t \in T$. Thus θ_a is an inner function.

Now consider the mapping Φ_1 defined by $\Phi_1 f(z) = ((I - \theta(z))^{-1} f(z), a)_E$, $z \in D, f \in Ka$. Because of $\Phi_a f(z) = (f, K_Z (I - \theta(z)^*)^{-1} a) \Phi_1$ is a regular mapping, i.e. $\Phi_1 f = 0$ iff f = 0. So Φ_1 maps Ka one-to-one onto a set $L = L_a$ of scalar analytic (in D) functions. If we define in L the inner product by $(h_1, h_2)_L = (\Phi_1^{-1} h_1, \Phi_1^{-1} h_2), h_1, h_2 \in L$, then L becomes a Hilbert space isometrically isomorphism to Ka. The space L possesses also reproducing kernel. This is the function

$$J_w(z) = \Phi_1 K_w(z) (I - \theta(W)^*)^{-1} a = (\varphi_a(z) + \overline{\varphi_a(w)}) 2^{-1} (1 - z\overline{w})^{-1}, \ z \in D, \ w \in D.$$

Finally, multiplication by the function $1 - \theta_a(z)$ is an isometrical isomorphism from L onto H_a (Lemma 2). Thus Φ is really an isometrical isomorphism from Ka onto H_a .

LEMMA 5. Let the assumptions of Lemma 4 be satisfied and let $t \in T_I$. Then there exists an operator $\alpha(t) \in B(E, E)$ such that

(6)
$$\lim_{r \to 1^{-}} (1 - r)(I - \theta(rt)^{*})^{-1} = \alpha(t)$$

96

in the strong operator convergence. If $a \in A \setminus \{0\}$, then the function $\gamma_t(\alpha(t)a(\gamma_t(z) = \gamma_t(t, z), \text{ see } (2))$ belongs to the subspace Ka (defined in Lemma 4) and it holds

(7)
$$\lim_{r \to 1^{-}} (1-r) K_{rt} (I - \theta(rt)^*)^{-1} a = \gamma_t \alpha(t) a$$

in the H-norm. If θ_a , H_a and Φ are as in Lemma 4 and if γ_t^a denotes the function $(1-\theta_a))(1-z\overline{t})^{-1}$, then $\gamma_t^a \in N_a$ iff $(\alpha(t)a, a)_E \neq 0$ and it is also

(8)
$$\Phi \gamma_t \alpha(t) a = (\alpha(t)a, \ a)_E \gamma_t^a.$$

Proof. Since $t \in T_I$, it follows that $\gamma_t b \in H$ for some $b \in E \setminus \{0\}$. Let $a \in E$ and $(b, a)_E \neq 0$. Denote by $P\gamma_t b$ the projection of $\gamma_t b$ to the subspace Ka. Because of

$$((I - \theta(z))^{-1} P \gamma_t(z) b, a)_E = (\gamma_t b, \ K_z (I - \theta(z)^*)^{-1} a) = (b, a)_E (1 - z\overline{t})^{-1}, \ z \in D,$$

it must be

(9)
$$\Phi P \gamma_t b = (b, a)_E \gamma_t^a.$$

Since $(b,a)_E \neq 0$, the function γ_t^a lies in H_a . If $K_w^a(z)$ denotes the reproducing kernel in H_a , then by Lemma 3 $\gamma_t^a = \lim_{r \to 1^-} \frac{K_{rt}^a}{K_{rt}}$ in the H_a -norm. Since Φ is an isomorphism (Lemma 4) and $\Phi^{-1}K_{rt}^a = (1 - \overline{\theta_a(rt)})K_{rt}(I - \theta(rt)^*)^{-1}a$ we have also

$$\Phi^{-1}\gamma_t^a = \lim_{r \to 1^-} (1 - \overline{\theta_a(rt)}) K_{rt} (I - \theta(rt)^*)^{-1} a$$

in the H-norm. Regarding the fact that

$$\lim_{r \to 1^{-}} (1 - \theta_a(rt))(1 - r)^{-1} = \lim_{r \to 1^{-}} (\gamma_t^a, K_{rt}^a)_{H_a} = \|\gamma_t^a\|^2,$$

we obtain

(10)
$$\Phi^{-1}\gamma_t^a = \|\gamma_t^a\|^2 \lim_{r \to 1^-} (1-r)K_{rt}(I-\theta(rt)^*)^{-1}a.$$

If we consider pointwise convergence (Lemma 1) in the last relation, we can conclude that there exists

(11)
$$\lim_{r \to 1^{-}} (1-r)(I-\theta(rt)^*)^{-1}a \stackrel{\text{def}}{=} \alpha(t)a$$

in the *E*-norm and that (7) must hold, which gives also $\gamma_t \alpha(t) a \in Ka$. In fact, the limit (11) exists and the relation (7) holds for every $a \in E$, for if $(b, a)_E = 0$ we can write a = (a+b)-b. Since a in (11) may be arbitrary, $\alpha(t)$ is a (bounded) operator and (6) follows. Putting $b = \alpha(t)a$ in (9) we obtain (8). Now (10) and (7) imply $\Phi^{-1}\gamma_t^a = \|\gamma_t^a\|^a \gamma_t \alpha(t)a$. Comparing this with (8) we see that $(\alpha(t)a, a)_E = \|\gamma_t^a\|^{-2}$. Hence it is evident that $\gamma_t^a \in H_a$ implies $(\alpha(t)a, a)_E \neq 0$ and (8) shows that the converse is also true.

LEMMA 6. In Lemma 5 all functions of the form $\gamma_t \alpha(t)a$, $a \in E$, form a complete set in $\gamma_t E$.

Georgijević

Proof. If $\gamma_t b \in \gamma_t E$ and $\gamma b \perp \gamma_t \alpha(t) a$, $a \in E$, then by (7) $0 = (\gamma_t b, \gamma_t \alpha(t) a) = \lim_{r \to 1} (1-r)(\gamma_t b, K_{rt}(I-\theta(rt)^*)^{-1}a) = (b, a)_E$, $a \in E$, i. e. b = 0 and $\gamma_t b = 0$.

LEMMA 7. Let the assumptions of Lemma 4 be satisfied. Then the set $G = G_I$ is orthogonal.

Proof. Let $t \in T_l$, $s \in T_I$, $t \neq s$, and let $\gamma_t \alpha(t) a \in \gamma_t E$ and $\gamma_s b \in \gamma_s E$. Then it follows by (7) that

$$(\gamma_t \alpha(t)a, \gamma_s b) = \lim_{r \to 1^-} (1 - r)(1 - r\overline{t}s)^{-1}(a, b)_E = 0.$$

By completeness of the set $\{\gamma_t \alpha(t) a \mid a \in E\}$ in $\gamma_t E$ it follows that $\gamma_t E \perp \gamma_s E$. Thus the family G is orthogonal.

THEOREM. Let θ be an inner operator function, U a unitary operator in E and let the operator $I - \theta(z)U^*$ have a bounded inverse for every $z \in D$. If $(1-r)^{-1}\Re\varphi(rt)$ is bounded in r for all $t \in T$ except for a countable set, then the family G_U is orthogonal and complete in H.

Proof. Since $H(\theta U^*) = H(\theta)$ for each unitary operator U (in E), it is enough to give the proof only in the case U = I. Thus let U = I. The assumption on boundedness of $(1-r)^{-1} \Re \varphi(rt)$ implies that $\lim_{r\to 1^-} \Re \varphi(rt) = 0$ in the strong operator convergence for all $t \in T$ except for a countable set. So the assumptions of Lemmas 4, 5, 6, 7 are satisfied.

Orthogonality of the family G is proved in Lemma 7. Let us prove the completeness of G. It is clear that whenever $(1 - r)^{-1}\Re\varphi(rt)$ is bounded then $(1 - r)^{-1}\Re\varphi_a(rt)$ is too, for $a \in E$ (φ_a as in Lemma 4). By Remark 1 and by Lemma 3 it follows that the condition (a) in Lemma 3 is satisfied for all $t \in T$ except for a countable set. By Theorem 7.1 and Lemma 3.1 in [3] it follows that the set of functions of the form γ_t^a , $t \in T$, which belong to H_a is complete in H_a . By Lemma 5 (relation (8)), Φ maps the set of all functions of the form $\nu\gamma_t^a$, $t \in T$, $\nu \in C$, which belong to H_a is complete in H_a . By Lemma 5 (relation (8)), Φ maps the set of functions of the form $\nu\gamma_t^a$, $t \in T$, $\nu \in C$, which belong to H_a . This implies that the set of functions of the form $\gamma_t \alpha(t)a$, $t \in T_I$, is complete Ka. If a function f in H is orthogonal to all subspaces of the type $\gamma_t E$, $t \in T_I$, it is orthogonal also to all functions of the form $\gamma_t \alpha(t)a$, $t \in T_I$, $a \in E$. Since the above set of functions for fixed a is complete in Ka, that implies $f \perp Ka$ for every $a \in E$. However, this implies that $((I - \theta(w))^{-1}f(w), a)_E = (f, K_w(I - \theta(w)^*)^{-1}a) = 0$ for every $a \in E$ and every $w \in D$, so that f = 0. Thus, the set G is complete in H. This completes the proof.

Remark 2. If the function θ admits analytic continuation across some point $t \in T$ and if $\theta(t) = U$, then $\gamma_t a \in H$ for every $a \in E$ and $\gamma_t(z)$ is obtained by evaluation of the (analytically continued) reproducing kernel $K_w(z)$ for w = t. In the general case the situation is, in a sense, similar. Namely, it follows easily by (7) that, for $t \in T_I$, $a \in E$ and $z \in D$, $\lim_{r \to 1^-} K_{rt}(z)\alpha(t)a = \gamma_t(z)\alpha(t)a$ in the *E*-norm. With the help of the last relation $K_w(z)$ can be extended for every $t \in T_I$ along the radius $\{rt \mid 0 \leq r \leq q\}$ at least as an operator function with values in

98

the set of bounded operators from $\alpha(t)E$ into $\alpha(t)E$, so that we can consider $\gamma_t(z)$ also in the general case as an evaluation of $K_w(z)$ for w = t.

REFERENCES

- [1] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
- [2] B. Sz.-Nagy, C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson-Akad. Kiadó, Paris et Budapest 1967.
- [3] D. N. Klark, One dimensional perturbations of restriced shifts, J. Anal. Math. 25 (1972), 169-191.
- [4] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.

Mašinski fakultet Univerzitet u Beogradu 11000 Beograd (Received 05 05 1983)