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BASES FROM ORTHOGONAL SUBSPACES OBTAINED

BY EVALUATION OF THE REPRODUCING KERNEL

Du�san Georgijevi�c

Abstract. Every inner operator function � with values in B(E;E), E { a �xed (separable)
Hilbert space, determines a co-invariant subspace H(�) of the operator of multiplication by z in
the Hardy space H2

E
. \Evaluating" the reproducing kernel of H(�) at \U-points" of the function

� (U is unitary operator) we obtain operator functions t(2) and subspaces tE. The main result
of the paper is: Let the operator I � �(z)U� have a bounded inverse for every z, jzj < 1. If
(1 � r)�1<'(rt) for de�nition of ' see (1) is uniform bounded in r, 0 � r < 1, for all t, jtj = 1,
except for a countable set, then the familly of subspaces tE is orthogonal and complete in H(�).
This generalizes an analogous result of Clark [3] in the scalar case.

1. Introduction. Throughout this paper we denote by D the unit disc
j z j< 1 and by T the unit circe j z j= 1 of the complex plane C. Given a
separable Hilbert spaceE(E 6= f0g), letH2

E be the standard Hardy space of analytic
E-valued functions on D. (See [1] or [2] for general references.) Writting inner
products and norms in H2

E we will omit designation of the space in the index. The
space H2

E possesses a so-called reproducing kernel. This is the function kw(z) =
(1� z �w)�1; w 2 D; z 2 D, with the following properties: kwa 2 H2

E ; w 2 D; a 2
E; (kwa = kw(�) a) and (f; kwa) = (f(w); a)E ; f 2 H2

E ; w 2 D. If � is an
inner operator function [1] (de�ned on D and with values in B(E;E)), then let
H = H(�) = H2

E 	 �H2
E . The reproducing kernel for the space H is the function

Kw(z) = (1 � z �w)�1(I � �(z)�(w)�); w 2 D; z 2 D, where by I is denoted the
identity mapping in E.

If U is a unitary operator in E , then we will also consider the following
operator functions:

(1) '(z) = 'U (z) = (I + �(z)U�)(I � �(z)U�)�1;

z 2 D, (if (I � �(z)U�)�1 exists) and

(2) t(z) = U (t; z) = (1� zt)�1(I � �(z)U�);
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t 2 T; z 2 D. In the scalar case (dimE = 1) U is a number of modulus 1 and U�

shall be replaced by U .

In [3] Clark considered orhogonal sets in H obtained by evaluation of the
kernelKw(z) on T , in the case dimE = 1. The purpose of this paper is to generalize
the criterion for completeness of such orhogonal sets which is contained in Theorem
7.1 of [3].

2. Bases from subspaces. Let TU be the set of all points t 2 T such that
ta 2 H for some a 2 E; a 6= 0. Given t 2 T , we denote by tE the closure of
the set of all functions of the form ta; a 2 E, lying in H . All such subspaces
form a family which we will denote by GU = ftE j t 2 TUg. The problem we are
interested in is: when does the family GU form an orhogonal basis from subspaces
of H , i. e. when does tE ? sE; t 6= s and Cl([tE; t 2 TU ) = H hold?
(Cl=closure).

We begin with some lemmas.

Lemma 1. The mapping f ! f(w) is a bounded operator from H2
E to E for

every w 2 D.

Proof . The statement follows from the inequality

kf(w)kE = supfj (f; kwa) : a 2 E; kak � 1g � kfk(kw(w))
1=2; f 2 H2

E ; w 2 D:

Note that it follows by lemma 1. that if the operator I��(z)U� has a bounded
inverse for at least one z 2 D then every function in tE has the form ta; a 2 E.

Lemma 2. Let H1 and H2 be Hilbert spaces with (scalar) reproducing kernels
[4], K1

w(z) and K2
w(z); w 2 D; z 2 D. If there exists a function h (from D into

C) such that h(z) 6= 0; z 2 D, and K2
w(z) = h(w)h(z)K1

w(z); w 2 D; z 2 D, then
multiplication by h is an isomorphism of spaces H1 and H1.

Proof . We establish the equality

(3) (hf; hg)2 = (f; g)1; f 2 H1; g 2 H1;

�rst in the case when f = h(w)K1
w; w 2 D, and g = h(�)K1

� ; � 2 D : (hf; hg)2 =
K2
w(�) = (f; g)1. By linearity it follows that (3) hodts also when f and g are

linear combinations of functions of the form h(w)K1
w; w 2 D. The same con-

clusion follows by continuity of the inner product and by completeness of the set
fh(w)K1

w j w 2 Dg in H1 also when f and g are arbitrary functions in H1. Thus
multiplication by h preserves the inner product. Since the set fK2

w j w 2 Dg is
complete in H2; hH1 = H2, i. e. multiplication by h is an isomorphism of spaces
H1 and H2.

Lemma 3. Let � be a scalar inner function and t 2 T . Then the following
are equivalent

(a) t 2 H for some complex number U of modulus 1,
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(b) the limit limr!1�Krt exists in the H-norm,

(c) kKrtk is bounded for r < 1.

Proof . (a) ) (b). If t 2 H for some U; j U j= 1, then every function f 2 H
has a nontangential limit f(t) at t and the functional f ! f(t) is bounded [3]. By
the existence of the limit limr!1� t(rt) = limr!1�(1�(rt)U )(1 � r)�1 it follows

that limr!1� �(rt) = U and that limr!1�Kw(rt) = t(w) = (Kw; t); w 2 D.
This means that Kw(t) = (Kw; t); w 2 D, so f(t) = (f; t) for every f 2 H . In
particular

lim
r!1�

(1� �(rt)U )(1� r)�1 = lim
r!1�

t(rt) = ktk
2:

This implies that

Krt(rt) = (1� �(rt)U )(1� r2)�1 + �(rt)U (1� �(rt)U)(1� r2)�1

tends to ktk
2 as r ! 1�.

Thus kKrt�tk
2 = Krt(rt)�t(rt)�t(rt)+ktk

2 ! 0, as r ! 1�, i. e. (b) holds.

(b)) (c) is clear.

(c) ) (a). Let � have the representation �(z) = �B(z)S(z); z 2 D, where
j � j= 1,

B(z) =

lY
k=1

bk(z) =

lY
k=1

j zk j =zk(zk � z)(1� zzk)
�1;

z 2 D, with zk 2 D for k = 1; 2; . . . ; l (1 � l � 1; j zk j =zk = 1, if zk = 0) (if �
has no zeros then B(z) � 1), and

S(z) = exp
�
�

Z 2�

0

(s+ z)(s� z)�1d�(x)
�
; z 2 D; (s = eix);

where � is a �nite, non-negative singular measure on T . From boundedness of
kKrtk

2 = Krt(rt) and from j B(rt) j�j �(rt) j and j S(rt) j� �(rt) j it follows that
(1� j B(rt) j2)(1� r2)�1 and (1� j S(rt) j2)(1� r2)�1 are bounded. Since

(1� j B(rt) j2)(1� r2)�1 = (1� j z1 j
2) j 1� rtz1 j

�2 +

+
lX

k=1

k�1Y
j=1

j bj(rt) j
2 (1� j zk j

2) j 1� rtzk j
�2!

!

lX
k=1

(1� j zk j
2) j 1� tzk j

�2 as r ! 1�;

it follows that

(4)

lX
k=1

(1� j zk j
2) j 1� tzk j

�2<1:
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Since j S(rt) j2= exp
�
�2(1�r2)

R 2�
0 j s�rt j�2 d�(x)

�
, it follows from boundednes

of (1� j S(rt) j2 (1� r2)�1 that
R 2�
0

j s� rt j�2 d�(x) is bounded for r suÆciently
near to 1, which gives

(5)

Z 2�

0

j s� t j�2 d�(x) <1:

Now, (4) and (5) impply that t 2 H for some U; j U j= 1, [3]. This completes the
proof.

Remark 1. Let <'(rt)(1 � r)�1 be bounded, t 2 T (' = '1). Then kKrtk is
bounded also. This is evident from the relation

Krt(rt) = <'(rt)(1 � r2)�1 j 1� �(rt) j2 :

Lemma 4. Let the operator I � �(z) have a bounded inverse for every z 2 D
and let <'(rt) ! 0; r ! 1�; (' = 'I) (at least in the weak operator convergence)
for a. e. t 2 T . Fix a 2 Enf0g and put 'a(z) = ('(z)a; a)E ; z 2 D. Then the
function �a('a � 1)('a + 1)�1 is a (scalar) inner function and the corresponding
space Ha = H(�a) is isometrically isomorphic to the subspace Ka of H generated
by functions of the form Kw(z)(I � �(w)�)�1a; w 2 D. An isomorphism � from
Ka to Ha is given by �f(z) = (1� �a(z))((I � �(z))�1f(z); a)E ; z 2 D; f 2 Ka.

Proof . Since k�(z)k � 1; z 2 D, and

<'(z) = (I � �(z))�1(I � �(z)��(z))(I � �(z)�)�1;

it follows that <'(z) � 0 and <'�(z) � 0, which implies j �a j� 1; z 2 D. Since
<'(rt) ! 0; r ! 1�, for a. e. t 2 T , it follows that the same holds for <'a and
so radial limits of �a have modulus 1 for a. e. t 2 T . Thus �a is an inner function.

Now consider the mapping �1 de�ned by �1f(z) = ((I � �(z))�1f(z); a)E ;
z 2 D; f 2 Ka. Because of �af(z) = (f;KZ(I � �(z)�)�1a) �1 is a regu-
lar mapping, i.e. �1f = 0 i� f = 0. So �1 maps Ka one-to-one onto a set
L = La of scalar analytic (in D) functions. If we de�ne in L the inner prod-
uct by (h1; h2)L = (��11 h1; �

�1
1 h2); h1; h2 2 L, then L becomes a Hilbert space

isometrically isomorphism to Ka. The space L possesses also reproducing kernel.
This is the function

Jw(z) = �1Kw(z)(I��(W )�)�1a = ('a(z)+'a(w))2
�1(1�zw)�1; z 2 D; w 2 D:

Finally, multiplication by the function 1��a(z) is an isometrical isomorphism
from L onto Ha (Lemma 2). Thus � is really an isometrical isomorphism from
Ka onto Ha.

Lemma 5. Let the assumptions of Lemma 4 be satis�ed and let t 2 TI . Then
there exists an operator �(t) 2 B(E;E) such that

(6) lim
r!1�

(1� r)(I � �(rt)�)�1 = �(t)
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in the strong operator convergence. If a 2 Anf0g, then the function t(�(t)a(t(z)
= t(t; z), see (2)) belongs to the subspace Ka (de�ned in Lemma 4) and it holds

(7) lim
r!1�

(1� r)Krt(I � �(rt)�)�1a = t�(t)a

in the H-norm. If �a; Ha and � are as in Lemma 4 and if at denotes the function
(1� �a))(1� zt)�1, then at 2 Na i� (�(t)a; a)E 6= 0 and it is also

(8) �t�(t)a = (�(t)a; a)E
a
t :

Proof . Since t 2 TI , it follows that tb 2 H for some b 2 Enf0g. Let a 2 E
and (b; a)E 6= 0. Denote by Ptb the projection of tb to the subspace Ka.
Because of

((I � �(z))�1Pt(z)b; a)E = (tb; Kz(I � �(z)�)�1a) = (b; a)E(1� zt)�1; z 2 D;

it must be

(9) �Ptb = (b; a)E
a
t :

Since (b; a)E 6= 0, the function at lies in Ha. If Ka
w(z) denotes the reproducing

kernel in Ha, then by Lemma 3 at = limr!1�K
a
rt in the Ha-norm. Since � is

an isomorphism (Lemma 4) and ��1Ka
rt = (1� �a(rt))Krt(I � �(rt)�)�1a we have

also
��1at = lim

r!1�
(1� �a(rt))Krt(I � �(rt)�)�1a

in the H-norm. Regarding the fact that

lim
r!1�

(1� �a(rt))(1� r)�1 = lim
r!1�

(at ;K
a
rt)Ha

= kat k
2;

we obtain

(10) ��1at = kat k
2 lim
r!1�

(1� r)Krt(I � �(rt)�)�1a:

If we consider pointwise convergence (Lemma 1) in the last relation, we can conclude
that there exists

(11) lim
r!1�

(1� r)(I � �(rt)�)�1a
def
= �(t)a

in the E-norm and that (7) must hold, which gives also t�(t)a 2 Ka. In fact, the
limit (11) exists and the relation (7) holds for every a 2 E, for if (b; a)E = 0 we can
write a = (a+b)�b. Since a in (11) may be arbitrary, �(t) is a (bounded) operator
and (6) follows. Putting b = �(t)a in (9) we obtain (8). Now (10) and (7) imply
��1at = kat k

at�(t)a. Comparing this with (8) we see that (�(t)a; a)E = kat k
�2.

Hence it is evident that at 2 Ha implies (�(t)a; a)E 6= 0 and (8) shows that the
converse is also true.

Lemma 6. In Lemma 5 all functions of the form t�(t)a; a 2 E, form a
complete set in tE.
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Proof . If tb 2 tE and b ? t�(t)a; a 2 E, then by (7) 0 = (tb; t�(t)a) =
lim
r!1�

(1� r)(tb;Krt(I � �(rt)�)�1a) = (b; a)E ; a 2 E, i. e. b = 0 and tb = 0.

Lemma 7. Let the assumptions of Lemma 4 be satis�ed. Then the set G = GI

is orthogonal.

Proof . Let t 2 Tl; s 2 TI ; t 6= s, and let t�(t)a 2 tE and sb 2 sE. Then
it follows by (7) that

(t�(t)a; sb) = lim
r!1�

(1� r)(1� rts)�1(a; b)E = 0:

By completeness of the set ft�(t)a j a 2 Eg in tE it follows that tE ? sE.
Thus the family G is orthogonal.

Theorem. Let � be an inner operator function, U a unitary operator in
E and let the operator I � �(z)U� have a bounded inverse for every z 2 D. If
(1 � r)�1<'(rt) is bounded in r for all t 2 T except for a countable set, then the
family GU is orthogonal and complete in H.

Proof . Since H(�U�) = H(�) for each unitary operator U (in E), it is
enough to give the proof only in the case U = I . Thus let U = I . The assumption
on boundedness of (1� r)�1<'(rt) implies that limr!1�<'(rt) = 0 in the strong
operator convergence for all t 2 T except for a countable set. So the assumptions
of Lemmas 4, 5, 6, 7 are satis�ed.

Orthogonality of the family G is proved in Lemma 7. Let us prove the
completeness of G . It is clear that whenever (1 � r)�1<'(rt) is bounded then
(1�r)�1<'a(rt) is too, for a 2 E ('a as in Lemma 4). By Remark 1 and by Lemma
3 it follows that the condition (a) in Lemma 3 is satis�ed for all t 2 T except for
a countable set. By Theorem 7.1 and Lemma 3.1 in [3] it follows that the set of
functions of the form at ; t 2 T , which belong toHa is complete inHa. By Lemma 5
(relation (8)), � maps the set of all functions of the form �t�(t)a; t 2 TI ; � 2 C (a
�xed), onto the set of all functions of the form �at ; t 2 T; � 2 C, which belong to
Ha. This implies that the set of functions of the form t�(t)a; t 2 TI , is complete
Ka. If a function f in H is orthogonal to all subspaces of the type tE; t 2 TI , it is
orthogonal also to all functions of the form t�(t)a; t 2 TI ; a 2 E. Since the above
set of functions for �xed a is complete in Ka, that implies f ? Ka for every a 2 E.
However, this implies that ((I � �(w))�1f(w); a)E = (f;Kw(I � �(w)�)�1a) = 0
for every a 2 E and every w 2 D, so that f = 0. Thus, the set G is complete in
H . This completes the proof.

Remark 2. If the function � admits analytic continuation across some point
t 2 T and if �(t) = U , then ta 2 H for every a 2 E and t(z) is obtained by
evaluation of the (analytically continued) reproducing kernel Kw(z) for w = t. In
the general case the situation is, in a sense, similar. Namely, it follows easily by
(7) that, for t 2 TI ; a 2 E and z 2 D; limr!1�Krt(z)�(t)a = t(z)�(t)a in the
E-norm. With the help of the last relation Kw(z) can be extended for every t 2 TI
along the radius frt j 0 � r � qg at least as an operator function with values in
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the set of bounded operators from �(t)E into �(t)E, so that we can consider t(z)
also in the general case as an evaluation of Kw(z) for w = t.
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