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SOME REMARKS ON M-CONVEXITY AND BEST APPROXIMATION

T. D. Narang*

Abstract. To study the uniqueness of best approximation properties for M-convex sub-
sets of metric spaces, strictly M-convex and uniformly M-convex metric spaces were introduced
in [2] by using the notion of M-convexity in metric spaces. In this note it is shown that strictly
M-convex and uniformlyM-convex metric spaces do not serve any fruitful purpose for the unique-
ness of solutions of best approximation problems (the very purpose for which these spaces were
introduced) as these prove the uniqueness of best approximation problems only when they are
Mengerian; however, Mengerian spaces in the sense of [2] do not exist. We also answer some of
the problems raised in [2] and show that some of the results proved in [2] are incorrect.

M -convexity for metric spaces was introduced in [2] as follows.

De�nition 1. A metric space (X; d) is said to be M -convex if for every x; y
in X; x 6= y, there exists a z in X di�erent from x and y such that d(x; y) =
d(x; z) + d(z; y).

As remarked in [2], every normed linear space is an M -convex metrix space
but not every M -convex metric space is a normed space. We may remark that
every convex metric space is M -convex (a metric space (X; d) is said to be a convex
metric space if the metric d is convex, i. e. if for each x; y in X; d determines
at least one mid-point z 2 X in the sense d(x; z) = d(z; y) = d(x; y)=2) but an
M -convex metric space need not be convex as the following example [2, Example
2.3] shows.

Let G = f(x; y) : 0 � x � 2; y = 0g[ f(x; y) : x = 2; 0 � y � 1g � R2 with
d((x1; y1); (x2; y2)) =Maxfj x1 � x2 j; j y1 � y1 jg. Then (G; d) is M -convex but
not convex.

Moreover, an M -convex metric space need not even be a linear metric space
[2, Example 1.4].

Using the notion of M -convexity in metric spaces, strictly M -convex and
uniformly M -convex metric spaces were introduced in [2] as follows.
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De�nition 2. A metric space (X; d) is said to be strictly M-convex if for every
x; y; t in X , all di�erent, and r > 0, there exists a z in X di�erent from x; y and
t such that.

(1) d(x; y) = d(x; z) + d(x; y)

(2) d(x; t) � r; d(y; t) � r, imply d(z; t) < r.

De�nition 3. A metric space (X; d) is said to be uniformly M-convex if to
every pair of positive numbers " and r , there corresponds a positive number Æ such
that every triplet x; y; t in X , all di�erent, and satisfying d(x; y) � "; d(x; t) <
r + Æ; d(y; t) < r + Æ, there exists a z in X with the properties

(1) d(x; y) = d(x; z) + d(z; y) (2) d(z; t) < r.

These two concepts are similar to those of strictly convex metric space and
uniformly convex metric space introduced in [1]. As claimed in [2, Proposition 1.9]
every uniformly M -convex metric space is strictly M -convex but not conversely;
no example is given to support that strict M -convexity need not imply uniform
M -convexity. Also, the example of uniformly M -convex space [2, Example 1.8] is
not clear. Furthermore the proof of the following result [2, Theorem 1.11] relating
strictly M -convex and uniformly M -convex spaces is defective.

Theorem 1. Every totally complete strictly M-convex metric space is uni-

formly M-convex.

First, the construction of the set St = f(x; y) 2 X � X : d(x; t) � rg is
defective it shoul be

St = f(x; y) 2 X �X : d(x; t) � r; d(y; t) � r; d(x; y) � "g:

Second, the function �t : St ! R de�ned as �t((x; y)) = r � d(z; t), where
d(x; z) + d(z; y) = d(x; y), is not single-valued as there may be more than one z
betwen x and y. So, unless the uniqueness of the point z is quaranteed (as in [1]),
the continuity of �t does not follow, and so Theorem 1 may not hold.

M -convex subsets of a metric space were introduced in [2] as follows.

De�nition 4. A subset G of a metric space (X; d) is aid to be M -convex if for
every x; y in G; x 6= y, there exists a z in G such that d(x; z) + d(z; y) = d(x; y).

It is clear that this de�nition is meaningless unless it is required that z is
di�erent from x and y , otherwise every non-empty set will be M -convex. So we
shall assume that it is a part of De�nition 4.

it was remarked in [2] that there is no relation between convexity and M -
convexity in a metric linear space. However as it is easy to see, one can say the
following:

Every convex set (cf. [1]) in an M - convex metric space is M -convex.

An example of a metric linear space in which there is an M -convex set which
is not convex is given in [2, Example 2.3], and it is remarked in [2] that in a normed
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linear space an M -convex set is always convex. However, this is not true, as the
same example (Example 2.3) shows.

It is remarked in [2] that in general, proximinal sets, or Chebyshev sets, are
neither convex not M -convex. Also the following question is raised in [2]:

Whether in a Hilbert space, every Chebyshev set is M -convex? The answer
is yes. In fact, we can say much more.

Theorem 2. Any closed set in a normed linear space is M -convex.

Proof . Let G be a closed set in a normed linear space X . Suppose G is not
M -convex. This means that there exists x; y 2 G; x 6= y, such that for these x
and y there is no z in G , di�erent from x and y such that

d(x; z) + d(z; y) = d(x; y) (1)

i. e. any z satisfying (1) does not lie in G. Consider

dist((x+y)=2; G)=inffk(x+ y)=2� gk : g2 Gg=1=2 inffk(x� g)+(y�g)kg 2 Gg

� 1=2 inffkx� gk+ ky � gk : g 2 Gg:

This gives, dist((x + y)=2; G) � 1=2 dist (x;G) + 1=2 dist (y;G) = 0 i. e.

dist((x+ y)=2; G) = 0 i.e. (x+ y)=2 2 G = G and also

kx�(x+ y)=2k+ky� (x+ y)=2k=kx� yk=2 + kx� yk=2=kx� yk i.e. (x + y)=2

lies between x and y , a contradiction.

Remark . This shows that every proximinal (Chebyshev) set in any normed
linear space is M -convex. The question whether it is convex is still open. The
answer is not known even in Hilbert spaces (cf. [3]).

Menger sets were de�ned in [2] as follows.

De�nition 5. In a metric space (X; d), a Menger set , denoted as Mhx;yi for
a pair of distinct points x; y is de�ned as the set of elements z in X such that
d(x; y) + d(z; y) = d(x; y) i.e. Mhx;yi = fz 2 X : d(x; z) + d(z; y) = d(x; y)g.

It was remarked in [2] that Menger sets can be empty sets, singelton sets or
arbitrary large set. It is clear that x; y 2 Mhx;yi, and so, unless one imposes the
condition that z is di�erent from x and y, Menger sets can never be empty or
singleton. But if one imposes this condition, then Proposition 2.9, which asserts
that the Mengen sets are always closed, is false as Menger sets can be open; e. g.
on the real line R with usual norm, the set ]x; y[ is a Menger set. Moreover, if we
do not impose the above condition, then no metric space is Mengerian. Mengerian
metric spaces were de�ned in [2] as:

De�nition 6. If a metric space has only singleton Menger sets for every pair
of distinct elements, then it will be called Mengerian.
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Furthermore, if Mengerian spaces do not exist, then Theorem 2.11 and The-
orem 2.12 do not have any signi�cance (there are also some misprints in the proofs
of these two theorems).

The de�nition of approximatively compact set (De�nition 2.12) is defective.
It should be (cf. [4]):

De�nition 7. A set G in a metric space (X; d) is said to be approximatively

compact if for every x 2 X and every sequence hyni in G with lim
n
d(x; yn) =

d(x;G), there exists a subsequence hynki converging to an element of G .

It is required in the proof of Theorem 2.13 [2] that De�nition 7 holds for
every x 2 X .

Metric spaces with property-P (De�nition 2.14) were introduced in [2] as
follows.

De�nition 8. A metric space (X; d) is said to have the P -property if for
a �xed p in X , every sequence hyni in an M -convex set G of X satisfying
limn d(p; yn) = d(p;G) has a Cauchy subsequence.

For metric spaces with P -property the following result (Theorem 2.15) was
proved in [2].

Theorem 3 A complete M-convex subset G of a metric space (X; d) having
the P -property is Chebyshev.

First, there is no need of taking the set G to be M -convex in De�nition 8
as well as in Theorem 3. Second, if we only require the existence of a Cauchy
subsequence in De�nition 8, then the proof of the uniqueness part of Theorem 3,
as given in [2], is incorrest, for by the P -property, hyni has a Cauchy subsequence
(it may be hy2ki or hy2k+1i). From this it does not follow that y1 = y2, since y1 or
y2 need not at all appear in the Cauchy subsequence.

The proof of Theorem 3, as given in [2], may work if we require in the de�ni-
tion that hyni itself is a Cauchy sequence. Moreover, it will be better if De�nition
8 is given for sets (see De�nition 4 of [1] for a de�nition of approximatively Cauchy
sets).

It may also be noted that the proof of Theorem 2.16 (Every uniformly M -
convex Mengerian metric space has the P -property) is embodied in Theorem 2.13,
rather than in Theorem 2.14 as noted in [2]. Moreover, this result will be valid
even with an improved form of De�nition 8, in which we require that hyni itself is
a Cauchy sequence.
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