PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 37 (51), 1985, pp. 81-84

ON APPROXIMATION BY MODIFIED BERNSTEIN POLYNOMIALS

Suresh, P. Singh, Govind Prasad

Abstract. We study some theorems on the approximation of the r-th derivative of a given
function f by corresponding r-th derivative of the modified Bernstein polynomials.

1. Introduction. For a function f defined on the closed interval [0,1] of
the real z-axis, the expression

(1.1) ank f(k/n),

where p, x(z) = (})z"(1 — 2)"~*, is called the Bernstein polynomial of order n of
the function f.

Recently Derriennic [1] studied a new kind of positive linear operators {L,}
for a Lebesque integrable function f € L]0, 1], defined as

(12) (Luf)(x) = (n+1) me / Pk (8) F (1),

which is a modification of the polynomials (1.1).
Following [1], for r < n, we get

)in! dr
I DRITEEY (PRSI Car

We will prove some theorems on the approximation of the r-th derivative of
a function f by the corresponding operators (Lgf)).

2. In this section we prove the following lemma which will be useful in proving
the theorems.
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LeMMA 2.1. For r < n, let
m! ! _
(2.1) T rym—r(z) = m an_nk(a:)/o Prtrktr(t)(t — )™ "dE.
Then one has the following relation

22 rm (T )

=(m+1)(1—-22)Th—rmr(z) +2mz(l —2)Th_rm_r_1(x)+
+ x(l - m)TrlL—r,m—r(m)a

with Ty, 0 = m In particular we get
(23) ﬁﬂ““(” o +(Tr++12))( (ln_+2f )+ 1)
Q) g Tumrala) =
"t 3)(n(:l—j“_j-)2)(n TrE) { it 1)(T7:4-2)1(1 2 421 7}

Proof . Differentiating (2.1) w. r. t.  we get

B =0Ty = - S oL =2) [ s 0)-
k=0 0

(=) dt —ma(1 — ) Th—rm—r—1().
Using the relation z(1 — 2)p), . . (z) = {k — (n — r)2}pn_rk(x), We get after sim-
plification
CE(l - ‘/E)Trlzfr,mfr(w)

= (mL—'r)' an_r,k(a)/o {k=(n-mt+@m-r)(t-2)}

o 'pn—l—r,k—i—r(t) (t - m)mirdt - mx(l - m)Tn—r,m—r—l(m)a

= e Lpners(@) [0 O (O~ )
(1= 2T () + (T
—maz(l —z) Ty m—r—1(z).

Again using t(1 —t) = —(t — z)? + (1 — 22)(t — ) + (1 — x) and integrating the
r. h. s. by parts, we get
:L’(]. - x)TrlL—r,m—r(m)

m-—r+1
= (m—r+2) (W)Tn_nm_rﬂ(x) — (m =1+ 1)(1 = 22)Tpepum—r(z)—
—mx(l —2)Th_rmr_1(x) —1(1 = 22) Ty m—r () +

(m -r+1

m+1

) (n+ T)Tn,,,’m,,qu (z)—

)(n + T)Tnfr,mfrJrl (1') - ma:(l - m)Tnfr,mfrfl (1')
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which on further simplification leads to the required result (2.2).
PrROPOSITION 2.2. For r <n, we have

(2.5)

(") — 2) () = nl(n + 1)! _on
LYt = 2)(x) = (o (1 - 2m)
(2.6)

(n+1)1? {(7‘-{—1)(7“-{—2)(1—23:)2
(n—r)(n—r+3)! n+1

Proof. The proof follows easily from (1.3), (2.3) and (2.4).
ProprosITION 2.3. For r < n, one has,

(2.7) LYt 2)*(@) < (r +2)/2(n+1), (0<z<1).
Proof. We can easily show from (2.6) that,

LYt —2)*(x) = +22(1 — x)}

Lt —2)°(@) < n+}«+2{(r+2)(rn++l)1(1 = +22(1 _x)}
42+ _ 0+

“(n+)n+r+2) ~ 2(n+1)
3. TuroreM 5.1. If f) is bounded and integrable in [0,1] and admits
(r + 2)-th derivative at a point x € [0, 1], then

(3.1) lim n{(LYf)(2) = fD (@)} = (r+ D (1= 20) " (@) +2(1+2) ) ().

Proof. By the Taylor formula, we have
FO) = () = (¢ = 2) O (@) + (= 2)?/2- fU) (@) + (¢ - 2)°/2-0(t - @),

where n(u) — 0 as v — 0 and 7 is bounded in [—z,1 — 2] and integrable. Now,
applying (1.3) to this and using the results (2.5) and (2.6), we get

(3.2)

(L%r)f)(l') _ f(T)(:L.) — |:(7. + 1)(1 _ 2m)f(r+1)(l_) + { (7" + 1)(7’ + 2)(1 — 2;[;)2

2(n+1)
3 n+l 40 n!(n 4+ 1)!
+a(l x)} n+r+ 3f " (x)} (n—7)l(n+r+2)! T Ene(®)
where E, »(z) = 2(nﬁ:_—1n|rir an k(T / Prtrpir(t)(t — z)?n(t — z)dt.

We shall show that nE, .(z) - 0asn — oco. Let M = sup | n(w) | and let
u€[—z,1—z]

€ < 0 be arbitrary. Choose 6 > 0 such that | n(u) |< &€ when | v |< §. So for all
t € [0,1], we have | n(t — ) |[< e + M(t — x)% /5. Clearly
nE, () <en/2- L (t — )*(x) + Mn/26% - LT (t — x)*(z)

_en (n+1)(n+1) (r+1)(r+2)(1—2w) M 1y
_?(n—r)(n+r+3){ n+1 +2x(1—x)}+W0(5),
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which show that nE, () — 0 as n — oco. Thus, as n — oo, we get the required
result from (3.2). This completes the proof.

THEOREM 3.2. Let f € CUtD[0,1] and let w(fU*+Y;.) be the moduli of
continuity of f"tV. Then forn >r, (r=0,1,2,...,), we have

(33) ML f = fOU< (r+ D/ (4 + 2OV 4+ 1/ { Ve + r/2) -
w(fUY51/v/m),

where the norm is sup-norm over [0,1], and A\r =1 + /2.

Proof . Following [2], we write

70— 1@ = - Dr @+ [ ) - @)
Now, applying (1.3) to the above and using the inequality
| £ @) = fU @) 1< {1 Ly = | [0} (D5 0),
and the results (2.5) and (2.6), we get
| (LY f) (@) = fO () |

< F@ILY (@ - 2)(@) |+l L[| [ 1 |y -] fody|](@)
<I E@ILY ) [+ 50D - 22 (0)

+ Lt - x)2(m)/26}.

Choosing § = 1/y/n and using the resilt (2.7), we get the required result (3.3). This
completes the proof.

Remark. By putting » = 0 in (3.1), we get Theorem 2.5 of Derriennic [1].
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