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ON APPROXIMATION BY MODIFIED BERNSTEIN POLYNOMIALS

Suresh, P. Singh, Govind Prasad

Abstract. We study some theorems on the approximation of the r-th derivative of a given
function f by corresponding r-th derivative of the modi�ed Bernstein polynomials.

1. Introduction. For a function f de�ned on the closed interval [0; 1] of
the real x-axis, the expression

(1.1) (Bnf)(x) =
nX

k=0

pn;k(x)f(k=n);

where pn;k(x) =
�
n

k

�
xk(1� x)n�k, is called the Bernstein polynomial of order n of

the function f .

Recently Derriennic [1] studied a new kind of positive linear operators fLng
for a Lebesque integrable function f 2 L1[0; 1], de�ned as

(1.2) (Lnf)(x) = (n+ 1)

nX
k=0

pn;k(x)

Z 1

0

pn;k(t)f(t)dt;

which is a modi�cation of the polynomials (1.1).

Following [1], for r � n, we get

(1.3) (L(r)
n f)(x) =

(n+ 1)!n!

(n� r)!(n + r)!

X
�)pn�r;k(x)

Z 1

0

pn+r;k+r(t)
drf(t)

dtr
dt

We will prove some theorems on the approximation of the r-th derivative of

a function f by the corresponding operators (L
(r)
n ).

2. In this section we prove the following lemma which will be useful in proving
the theorems.
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�)
P

stands for
n�rP

k=0

.
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Lemma 2.1. For r � n, let

(2.1) Tn�r;m�r(x) =
m!

(m� r)!

X
pn�r;k(x)

Z 1

0

pn+r;k+r(t)(t� x)m�rdt:

Then one has the following relation

(n+m+ 2)
�m� r + 1

m+ 1

�
Tn�r;m�r+1(x)(2.2)

= (m+ 1)(1� 2x)Tn�r;m�r(x) + 2mx(1� x)Tn�r;m�r�1(x)+

+ x(1� x)T 0n�r;m�r(x);

with Tn�r;0 =
r!

(n+r+1) . In particular we get

(2.3)
1

(r + 1)!
Tn�r;1(x) =

(r + 1)(1� 2x)

(n+ r + 2)(n+ r + 1)

(2.4)
2

(r + 2)!
Tu�r;2(x) =

=
(n+ 1)

(n+ r + 3)(n+ r + 2)(n+ r + 1)

n (r + 1)(r + 2)(1� 2x)2

n+ 1
+ 2x(1� x)

o
:

Proof . Di�erentiating (2.1) w. r. t. x we get

x(1� x)T 0n�r;m�r(x) =
m!

(m� r)!

n�rX
k=0

p0n�r;k(x)x(1 � x)

Z 1

0

pn+r;k+r(t) � � �

� � � (t� x)m�rdt�mx(1� x)Tn�r;m�r�1(x):

Using the relation x(1 � x)p0n�r;k(x) = fk � (n � r)xgpn�r;k(x), we get after sim-
pli�cation

x(1� x)T 0n�r;m�r(x)

=
m!

(m� r)!

X
pn�r;k(x)

Z 1

0

fk � (n� r)t + (n� r)(t � x)g � � �

� � � pn+r;k+r(t)(t� x)m�rdt�mx(1� x)Tn�r;m�r�1(x);

=
m!

(m� r)!

X
pn�r;k(x)

Z 1

0

t(1� t)p0n+r;k+r(t)(t� x)m�rdt � � �

� � � � r(1 � 2x)Tn�r;m�r(x) +
�m� r + 1

m+ 1

�
(n+ r)Tn�r;m�r+1(x)�

�mx(1� x)Tn�r;m�r�1(x):

Again using t(1� t) = �(t� x)2 + (1� 2x)(t� x) + x(1� x) and integrating the
r. h. s. by parts, we get

x(1� x)T 0n�r;m�r(x)

= (m� r + 2)
�m� r + 1

m+ 1

�
Tn�r;m�r+1(x) � (m� r + 1)(1� 2x)Tn�r;m�r(x)�

�mx(1� x)Tn�r;m�r�1(x)� r(1� 2x)Tn�r;m�r(x)+

+
�m� r + 1

m+ 1

�
(n+ r)Tn�r;m�r+1(x) �mx(1� x)Tn�r;m�r�1(x)
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which on further simpli�cation leads to the required result (2.2).

Proposition 2.2. For r � n, we have

L(r)
n (t� x)(x) =

n!(n+ 1)!

(n� r)!(n� r + 2)!
(1� 2x)

(2.5)

L(r)
n (t� x)2(x) =

(n+ 1)!2

(n� r)!(n� r + 3)!

n (r + 1)(r + 2)(1� 2x)2

n+ 1
+ 2x(1� x)

o(2.6)

Proof . The proof follows easily from (1.3), (2.3) and (2.4).

Proposition 2.3. For r � n, one has,

(2.7) L(r)
n (t� x)2(x) � (r + 2)=2(n+ 1); (0 � x � 1):

Proof . We can easily show from (2.6) that,

L(r)
n (t� x)2(x) � 1

n+ r + 2

n (r + 2)(r + 1)(1� 2x)2

n+ 1
+ 2x(1� x)

o

� (r + 2)(r + 1)

(n+ 1)(n+ r + 2)
� (r + 2)

2(n+ 1)
; r � n:

3. Theorem 5.1. If f (r) is bounded and integrable in [0; 1] and admits

(r + 2)-th derivative at a point x 2 [0; 1], then

(3.1) lim
n!1

nf(L(r)
n f)(x)�f (r)(x)g = (r+1)(1�2x)f (r+1)(x)+x(1+x)f (r+2)(x):

Proof . By the Taylor formula, we have

f (r)(t)� f (r)(x) = (t� x)f (r+1)(x) + (t� x)2=2 � f (r+2)(x) + (t� x)2=2 � �(t� x);

where �(u) ! 0 as u ! 0 and � is bounded in [�x; 1 � x] and integrable. Now,
applying (1.3) to this and using the results (2.5) and (2.6), we get

(L(r)
n f)(x)� f (r)(x) =

�
(r + 1)(1� 2x)f (r+1)(x) +

�
(r + 1)(r + 2)(1� 2x)2

2(n+ 1)

(3.2)

+x(1� x)

�
n+ 1

n+ r + 3
f (r+2)(x)

�
n!(n+ 1)!

(n� r)!(n + r + 2)!
+En;e(x)

where En;r(x) =
(n+ 1)!n!

2(n� r)!(n+ r)!

X
pn�r;k(x)

Z 1

0

pn+r;k+r(t)(t � x)2�(t� x)dt:

We shall show that nEn;r(x) ! 0 as n ! 1. Let M = sup
u2[�x;1�x]

j �(u) j and let

" < 0 be arbitrary. Choose Æ > 0 such that j �(u) j< " when j u j� Æ. So for all
t 2 [0; 1], we have j �(t� x) j< "+M(t� x)2=Æ2. Clearly

nEn;r(x) < "n=2 � L(r)
e (t� x)2(x) +Mn=2Æ2 � L(r)

n (t� x)4(x)

=
"n

2

(n+ 1)!(n+ 1)!

(n� r)!(n + r + 3)!

�
(r + 1)(r + 2)(1� 2x)2

n+ 1
+ 2x(1� x)

�
+

M

2Æ2
O
� 1
n

�
;
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which show that nEn;r(x) ! 0 as n ! 1. Thus, as n ! 1, we get the required
result from (3.2). This completes the proof.

Theorem 3.2. Let f 2 C(r+1)[0; 1] and let w(f (r+1); �) be the moduli of

continuity of f (r+1). Then for n � r; (r = 0; 1; 2; . . . ; ), we have

(3.3) kL(r)
n f � f (r)k � (r + 1)=(n+ r + 2)kf (r+1)k+ 1=

p
nf
p
�r + �r=2g � � �

� � �w(f (r+1); 1=pn);
where the norm is sup-norm over [0; 1], and �r = 1 + r=2.

Proof . Following [2], we write

f (r) � f (r)(x) = (t� x)f (r+1)(x) +

Z t

x

ff (r+1)(y)� f (r+1)(x)gdy:

Now, applying (1.3) to the above and using the inequality

j f (r+1)(y)� f (r+1)(x) j� f1+ j y � x j =Ægw(f (r+1); Æ);
and the results (2.5) and (2.6), we get

j (L(r)
n f)(x)� f (r)(x) j

�j f (r+1)(x)kL(r)
n (t� x)(x) j +w(f (r+1); Æ)L(r)

n

h???
Z t

x

1+ j y � x j =Ædy
???i(x);

�j f (r+1)(x)kL(r)
n (t� x)(x) j +w(f (r+1); Æ)

�q
L
(r)
n (t� x)2(x)

+ L(r)
n (t� x)2(x)=2Æ

�
:

Choosing Æ = 1=
p
n and using the resilt (2.7), we get the required result (3.3). This

completes the proof.

Remark . By putting r = 0 in (3.1), we get Theorem 2.5 of Derriennic [1].
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