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ON ALGEBRAS ALL OF WHOSE SUBALGEBRAS ARE SIMPLE;

SOME SOLUTIONS OF PLONKA'S PROBLEM

Sin-Min Lee

Abstract. For each cardinal number � � 1, we construct two types of grupoids hX�; Æi
and hX�; �i which are hereditarily simple and have subgrupoids of all small orded. If � � @0, we
show that they both admit only discrete topology to become topological grupoids. An application
of the grupoid hX�; �i in the theory of non-associative rings is indicated.

1. Introduction. An algebra U is simple if and only if its lattice of congru-
ences is isomorphic to the two element chain. It is said to be hereditarily simple if
every subalgebra is simple.

J. Plonka of the Polish Academy of Sciences (private communication) has
asked whether there exists an in�nite hereditarily simple universal algebra U =
hA;F i such that for any cardinal number 1 � � �j A j there exists a subalgebra B
of order � =j B j.

The in�nite chain, the left zero semigroups of the right zero semigroups are
example of semigroups with arbitrary small order of subalgebras. Unifortunately,
they are not hereditarily simple.

The construction of quasi-primal algebras which was given by Stone in [3, p.
404] provides hereditarily simple algebras with arbitrarily small order of subalge-
bras. However, all the subalgebras are �nite.

The aim of this note is to present two types of grupoids, i. e. universal alge-
bras of type h2i which provide solution to Plonka's problem. We show that those
grupoids of in�tine cardinalities admit only discrete topology to become topological
grupoids. Using one type of grupoids and division rings we can construct a large
class of simple non-associative rings.

2. Hereditarily Simple Groupoids. For each cardinal number � � 1, let
X� be a set with such a cardinal number.

We introduce here two di�erent types of grupoids:
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(I) Fix an element, say e , in X�. De�ne a binary operation Æ on X� as follows:

(1) x Æ e = e Æ x = x for all x in X�.

(2) x Æ x = x for all x in X�.

(3) x Æ y = e if x 6= y in X�nfeg.

(II) Fix an element, say 0, in X�. De�ne a binary operation � on X� as follows:

(1) x � 0 = 0 � x = 0 for all x in X�.

(2) x � x = 0 for all x in X�.

(3) x � y = x if x 6= y in X�nf0g.

We call the elements 0 and e in hX�; �i and hX�; Æi respectively distinquished

elements.

We have the following result:

Theorem 2.1. The grupoid hX�; Æi(orhX�; �i) has the following properties:

(1) a subset A is a subrupoid if and only if it contains the distinguished element;

(2) each subgrupoid is simple.

Proof (1) is obvious.

(2) If A is a subgrupoid of hX�; Æi then by (1) it is isomorphic to X� for
� =j A j. Therefore we need to show that each grupoid of the form hX�; Æi is
simple.

Let � be a non-identity congurence of X� and x; y are two distinct elements
such that x�y. Consider the following cases:

Case 1. x = e. From e�y we have for any z 2 X�nfe; yg; z Æ e�z Æ y, i. e. z�e.
Hence � = X� �X�.

Case 2. x; y 2 X�nfeg. Since x Æ x�x Æ y we obtain x�e which reduces to case 1.
Hence � = X� �X�.

All these cases show that � is the universal conguence. Hence hX�; Æi is
simple.

The proof for hX�; �i is similar to the above proof and we omit it. �

Corollary 2.2. For any � � @0 the grupoids hX�; Æi and hX�; �i are

solutions of Plonka's problem. �

Remark . Mc Nulty and Shallon [8] construced a grupoid G(G) from a graph
G which they called graph algebra. The grupoid hX�; �i is in fact a graph algebra
G(X�

�) of a complete graph on X�nf0g = X�

�.

A neighborhood of a vertex in the graph is the set of all vertices adjacent to
that vertex. McNulty and Shallon showed that the graph algebra G(G) is simple if
and only if for any pair of distinct vertices in G it has distinct neigborhoods.

Since for each vertex x of the complete graph X�

� the neighborhood N(x) of
x is X�nfxg, by the result of McNulty and Shallon we can give another proof of
the simplicity of hX�; �i.
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3. Special Feature of Grupoids hX�; Æi and hX�; �i. Recall that a triple
hA;F ;T i, which consist of a universal algebra hA;F i, is a topological algebra if
each operation f of F is continuous under T . A universal algebra is called a DT -
algebra ([6]) if the only topology if can be equipped with to become a topological
algebra is the disrete topology.

Hansen [4] provided the �rst example of a DT -grupoid. In [6, 7] we showed
that any n-grupoid, i. e. algebra of type hni, is a subalgebra of a DT �n- grupoid.
Other types of DT -algebras such as groups, rings, quasi-groups and loops have been
investigated in [1, 9, 10] and [11].

We now prove:

Theorem 3.3. For any cardinal number � � @0, the grupoid hX�; �i is a

DT -grupoid.

Proof , Let T be a Hausdor� topology such that hX�; �;T i is topological
grupoid. We want to show that any one-element set fxg is open in hX�;T i, from
which we will deduce that T is discrete. Consider the following cases:

Case 1. x 6= 0. Since x � x = 0 we have that for each open neighborhood V of
0 there exists an open neighborhood U of x such that U � U � V . As hX�;T i
is a Hausdor� space we can �nd an open neighborhood V of 0 which does not
contain x. Then, by de�nition of our operation �; U must be either fxg or fx; 0g.
If U = fx; 0g then, as f0g is closed, we conclude that fxg = U � f0g is open.

Case 2. x = 0. Since y � 0 = 0, if W is an open neighborhood of 0 that contains
no x , then by continuity of � we can �nd two open neighborhoods U; V of y, and
0, respectively, such that U � V � W . Then V must be equal to f0g or f0; xg, for
otherwise we would have x 2W , which contradicts the hypothesis.

By the argument of case 1 we conclude that f0g is open. Thus T is a discrete
topology. �

Using a similar argument, we also have the following theorem:

Theorem 3.4. For any cardinal number � � @0, the grupoid hX�; Æi is a

DT -grupoid.

4. Application of the Grupoid hX�; �i in the Theory of Non-

Associative Rings. In this section we shall use the grupoids of Section 2 to
construct some simple non-associative rings.

Let hG; �i be a grupoid. Let F be a division ring. Denote by F [G] the set
of all functuions from G to F with �nite support, i. e. f(a) = 0 for almost every
a 2 G. Let H : G�G! F be a non-zero function.

De�ne + and � on F [G] as follows:

(1) (f + g)(a) = f(a) + g(a) for any f; g 2 F [G] and a 2 G.

(2) (f � g)(a) =
P

b�c=a

H(b; c)f(b) � g(c).
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In general, F [G] is a non-associative ring. We will denote f by
P

ra where
f(a) = r. If the grupoid G has the zero z we shall identify the element rz where
r 2 F with the zero 0 of the ring. The ring is called the truncated grupoid ring over
F associated with the grupoid G and the factor set fH(i; j)g and will be denoted
by F [G;H ].

If H : G � G ! F is the constant map H(i; j) = 1 for all i; j 2 G, then
F [G;H ] is the usual grupoid ring.

This construction of ring was orginally introduced by Bruck [2] for the loop
G and he showed that for a suitable choice of the factor set fH(i; j)g, the truncated
loop algebra is simple. Jenner [5] showed that if the factor set has the property
that H(i; j) 6= 0 for xi � xj 6= 0, then the truncated loop algebra is simple.

We observe that the following holds:

Æ e a b

e e a b

a a e e

b b e e

Example 4.5. Let hX2; Æi = fe; a; bg with the following multiplication table
and F = GF (2) be the Galois �eld of order 2.

Then the grupoid ring F [X2] is not simple. In fact, I = f0; e+ a; e+ b; a+ bg
is a proper ideal of F [X2].

However, for the type 2 grupoids we have:

Theorem 4.6. For any � � 1 and any division ring F , if X� is the type 2
grupoid and H : X� �X� ! F , with property H(i; j) 6= 0 for any i 6= j, then the

truncated grupoid ring F [X�;H ] is simple.

Proof . It suÆcies to show that any two-sided ideal (u) generated by a non-
zero element u in F [X�;H ] is the whole ring.

If u has length greater than two, then by the property of the multiplication
of the grupoid X� we can �nd an element in (u) with length one.

Without loss of generality, we may assume u = rxj . For any xi 2 X� and
s 2 F we have H(i; j)�1(s; r)�1xi Æ u = sxi 2 (u). Thus (u) contains all the
generators of F [X�;H ] and hence (u) = F [X�;H ]: �

The above result will provide a large class of new simple non-associative rings.
We deduce from Theorem 4.6 the following theorem:

Theorem 4.7. For any � � 1, there exists a simple ring R with � generators

such that R contains a simple subring which is generated by � generators for all

1 � � � �.

We make the following conjecture:

Conjecture 4.8. For any � � N0, and any �nite Galois �eld F , the simple

ring F [X ;H ] in Theorem 4.6 is a DT -ring.
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