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ON SOME GRAPHIC POLYNOMIALS WHOSE ZEROS ARE REAL

Ivan Gutman

Abstract. Polynomials which are formed by linear combination of the characteristic poly-
nomial of a graph G and the characteristic polynomials of the vertex-deleted subgraphs of G
have real zeros. The same is true for the linear combination of the matching polynomial of G
and the matching polynomials of the vertex-deleted subgraphs of G. Several statements about
the location of the zeros of these polynomials are obtained.

1. Introduction. Let G be a graph having n vertices, n > 2. Let the
vertices of G be labelled by vy, vs,...,v,. The subgraph obtained from G by
deletion of v, will be denoted by G,.

Two polynomials associated with a graph have been extesively studied in the
mathematical literature, namely the characteristic [1] and the matching polynomial
[2]. They will be denoted by ¢(G) and a(G), respectively.

Both ¢(G) and a(G) are polynomials of degree n in the variable z. Their
zeros will be denoted by z;,1,2,... ,n and y;, ¢ = 1,2,... ,n, respectively. It is
known [1, 2] that all z;’s and y;’s are real and that, in addition, the following
interlacing relations holds:

(1) z; <al <mjpq for i=1,...,n—-1
2y <yl <yy1 for i=1,...,n—1,
where 2! and y! are the zeros of ¢(G,) and a(G,), respectively.
It is also known that
(3) do(@)dz = ' 9(Gr),  (4) da(G)/dz = T, a(Gr).

We shall examine several classes of graphic polynomials and determine certain
properties of their zeros.

Let A be an ordered n-tuple (A;, As, ..., Ay) of positive real numbers.
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Let B C {1,2,...,n}. For given A, B and graph G we define following six poly-
nomials:

P*(G) =D A"p(G,), p™(G) = ¢(G) — (@)
réB
¢ (G) = 9(G) + 9" (),
a*(G) = Z Ara(G,), a” (G) = a(G) — a™(G),
reB
at(G) = a(G) + a*(G).
Note that for 41 = Ay =--- = A, =1 and B = {1,2,... ,n}, ¢*(G) and

a*(G) are equal to the first derivatives of ¢(G) and a(G), respectively, eqs. (3)
and (4)

The following theorem can be understood as the main result of the present
work.

THEOREM 1. (a) For all A, B and G , all the zeros of ¢*(G), ¢~ (G), v (G),
a*(@), a=(G) and ot (G) are real. (b) If these zeros are denoted by z%, x; x;
yi,y; and y;', respectively, then for i = 1,...,n — 1, a:j' <z <zp <zxf <
35:;1 STip1 STyp-

2. Preliminaries. All the polynomials considered in the present paper will
be assumed to have real coefficients and a positive leading coefficient, (¢(G), a(Q)
and the polynomials introduced in Definition 1 meet, of course, these requirements.)
The variable in all the polynomials considered is denoted by .

Let P and () be two polynomials of degree m and n, respectively. Let
their zeros be p1,p2,... ,pm and q1, 2, - - - , Gn, respectively.

We say that P separates () in the following two cases;
(a)if m=n—1and ¢; <p; <gjp1 fori=1,... ,n—1, and
(b)yifm=mnand ¢ <p; <gir1 fori=1,... ,n—1and ¢, < pp-
Then we shall write P sep Q.
The relation P sep ) implies, of course, that all the zeros of both P and
@ are real. We shall need the following simple property of the separation relation.
LEMMA 1. If a polynomial S exists, which separates the polynomials P, Q and
R, then from P sep ) and Q sep R it follows that P sep R.
Using the notation of Definition 2, we can formulate the inequalities (1) and
(2) in the following manner.
LEMMA 2. For allr =1,2,...,n, ¢(G,) sep o(G) and a(G,) sep a(Q).

LEMMA 3. Let P,Q and R be polynomials, such that P sep R and @ sep R
and let P and Q) have equal degrees m. Then for Ay and As being arbitrary positive
constants.

(5) min{p;, ¢;} < s; < max{p;,q;},
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where p;,q; and s; are the zeros of P,Q and S = A1 P + A>Q, respectively, i =
1,2,...,m.

Proof. Let T be the greatest common divisor of P and @ andlet P =T Py
and Q =T -Qp. Then also S =T - Sy with Sy = A1 Py + A2Qo.

If p; = q;, then the inequalities (5) hold in a trivial manner. It is, therefore,
sufficient to prove (5) for the zeros of Py, Qo and Sp,

Let po i, q0,; and sp 3, 4 = 1,... ,mg be the zeros of Fy, Q9 and Sp, respectively,
labelled in non-decreasing order.

Two cases are to be distinguished: mg, the degree of Py, Qo and Sp, is either
even or odd. Here we shall suppose that mg is even; the proof for the case when
my is odd is fully analogous.

If myg is even, then for < po1 (respectively for & < go 1), the polynomial
Py (respectively () has positive values. Therefore Sy is necessarily positive for
x < min{po,1,qo,1}. Similarly, in the interval [max{po1,qo,1}, min{po 2, qoz2)] the
polynomial Sy must be negative, in the interval [max{po 2, qo,2}, min{po,3,go,3}]S0
must be positive etc. Consequently, so; lies in the internal [min {po,go,},
max {po,goi}], ¢ = 1,...,mp. The requirements P sep R and @ sep R quar-
antee that the above intervals will not overlap. O

3. Some separation relations. From Lemma 2 we see that the polynomials
©(G,) and a(G,) meet the requirements of Lemma 3. Hence we have the following
immediate consequence of Lemma 3.

LEMMA 4. For all A, B and G,

in {27} <zt < r in <y < n,oi=1,...,n—1
min {27} <2 <max{zi}  min <yf <maxfyi}, i=1...,n-1

A special case of the result above is obtained by taking into account egs. (3)
and (4).

COROLLARY. If z} and y} are the zeros of the first derivative of o(G) and
a(@), respectively, then fori=1,... n—1,

min {zj} <z <max{zj},  min{y;} <y; < max{y;}.
” ” ”

THEOREM 2. For all A, B and G; ¢(G) sep o(G) and a*(G) sep a(Q)

Proof. By eqn. (1) (or by Lemma 2), z; < min {z}} and max{z]} < z;41.
Then by Lemma 4, z; < 2} < x;41, and the first part of Theorem 2 follows. The
proof of the second part is analogous. O

THEOREM 3. For all A, B and G,
¢*(G) sep 9~ (G), ¢"(G) sep ¢™(G), a*(G) sep a”™ (G), a*(G) sep a™(G).

Proof. We prove here only the first of the four statements given in the
theorem, assuming besides that n is even. The proof in the case of odd n , as well
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as the proof of the additional three separation relations, follows in a completely
analogous manner.

Let us further assume that the zeros of ¢(G) and ¢*(G) are mutually distinct.
(When this is not the case, then we have to find the greatest common divisor
of o(G) and ¢*(G) and to proceed similarly as in the proof of Lemma 3.) We
already know that ¢*(G) sep ¢(G). Since n is assumed to be even, for z < z;
the polynomial ¢(G) has positive values, where as for = < z7, ¢*(G) is negative.
Furthermore, z; < zF. Therefore, o(G) — ¢*(G) will be positive for z < ;.
Similar arguments show that ¢(G) — ¢*(G) will be negative in the interval [z}, z2],
positive in the interval [}, z3] etc. Therefore, the zeros of ¢~ (G) lie in the intervals
[x;,2], i = 1,...,n — 1 and another zero lies in [z,,00). These intervals cannot
overlap because of Theorem 2.

This proves that ¢*(G) separates ¢(G) if n is even. O
THEOREM 4. For all A, B and G,
¢7(G) sep p(G), ¢(G) sep p*(G), a(G) sep a(G), (@) sep o (G).

Proof . In the proof of the previous theorem it was shown that the zeros z;
of ¢~ (G) lie in the interval [z;,2}], i. e. ; < z; fori=1,2,...,n This, however,
is just the first separation relation given in Theorem 4. Etc. O

THEOREM 5. For all A, B and G, ¢ (G) sep ¢ (GQ) and a (G) sep at(Q).

Proof. Apply Lemma 1 to Theorem 3 and 4. Note that ¢*(G) and o*(G)
play now the role of the polynomial S. O

By proving Theorems 2-5 we have, of course, also completed the proof of
Theorem 1. It can be sean that Theorem 1 is, in fact, a consequence of the inter-
lacing relations (1) and (2). It would be interesting to see if results similar to those
given in Theorem 1 hold also for subgraphs obtained by deletion of more that one
vertex from the graph.
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