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AN APPLICATION OF NONSTANDARD ANALYSIS TO
FUNCTIONAL EQUATIONS

Miodrag Raskovié

Abstract. Using methods of nonstandard analysis it is proved that all measurable solutions
of the equation f(z + y) = g(f(z), f(y), z,y) (with g continuous) are continuous.

We suppose that the reader is acquainted with the basic facts of nonstandard
analysis, including Loeb measure.

Let k be a positive integer, H an infinite integer, T = {-k, 1/H — k,
2/H — k,...,—2/H + k, =1/H + k,k} and p' the Loeb mesure obtained from
counting measure on TkH. Let fi map [—k, k] into R and let F}, map TkH into *R.

Definition 1. Function F}, is a lifting of the function f, iff
W ({z : st(Fi(z)) = fe(st(x))}) =0

Definition 2. Function Fy, is a uniform lifting of the function f, iff st(Fy(z)) =
fr(st(z)) for each z € TH.

The following theorems connect these notions with well known notions of
continuity and measurability.

THEOREM 1. ([1, 2]) Function fi, is Lebesque measurable iff it has a lifting
function Fy.

THEOREM 2. [2] Function fy, is continuous iff it has a uniform lifting unction
Fy.

We offer a new proof of the following theorem essentialy due to Hahn.

THEOREM 3. [3] Let f : R — R be Lebesgue measurable, g : R* — R
continuous and f(x +y) = g(f(z), f(y), z,y). Then f is continuous.
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Proof . Suppose (T2** P(T#), ) is an internal measure space with a count-
ing measure u and let p” be the corresponding Loeb measure.

Lebesque measurable function far, = f [ [-2k, 2k] by Theorem 1 has a lifting
function Fyy,. Let U = {z € T# st(Far(z)) = far(st(z))}. Obviously u(T?k) =
w'(U) = 4k. Let also A € T# be internal set such that u'(4) > 3k. It is easy to
show that for all z € T, (x — A) N A # @. Hence we can define an improved
lifting function.

Fi(z) = min{"g(For(y), For(2), y,2) |z =y+2zAy, 2z € A}

for each x € TH. Tt follows immediately that F} is the uniform lifting function for
f#, so by Theorem 2 function f} is continuous. Therefore f is continuos too.

Finally let us remark that Theorem 3 can be generalized in several directions.
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