PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 37 (51), 1985, pp. 23-24

AN APPLICATION OF NONSTANDARD ANALYSIS TO FUNCTIONAL EQUATIONS

Miodrag Rašković

Abstract. Using methods of nonstandard analysis it is proved that all measurable solutions of the equation f(x + y) = g(f(x), f(y), x, y) (with g continuous) are continuous.

We suppose that the reader is acquainted with the basic facts of nonstandard analysis, including Loeb measure.

Let k be a positive integer, H an infinite integer, $T_k^H = \{-k, 1/H - k, 2/H - k, \dots, -2/H + k, -1/H + k, k\}$ and μ' the Loeb mesure obtained from counting measure on T_k^H . Let f_k map [-k, k] into R and let F_k map T_k^H into *R.

Definition 1. Function F_k is a lifting of the function f_k iff

$$\mu'(\{x : st(F_k(x)) = f_k(st(x))\}) = 0$$

Definition 2. Function F_k is a uniform lifting of the function f_k iff $\operatorname{st}(F_k(x)) = f_k(\operatorname{st}(x))$ for each $x \in T_K^H$.

The following theorems connect these notions with well known notions of continuity and measurability.

THEOREM 1. ([1, 2]) Function f_k is Lebesgue measurable iff it has a lifting function F_k .

THEOREM 2. [2] Function f_k is continuous iff it has a uniform lifting unction F_k .

We offer a new proof of the following theorem essentialy due to Hahn.

THEOREM 3. [3] Let $f : R \to R$ be Lebesgue measurable, $g : R^4 \to R$ continuous and f(x + y) = g(f(x), f(y), x, y). Then f is continuous.

AMS Subject Classification (1980): Primary 03 H 05, 39 B 99.

Rašković

Proof. Suppose $(T_h^{2k}, *\mathcal{P}(T_H^{2k}), \mu)$ is an internal measure space with a counting measure μ and let μ'' be the corresponding Loeb measure.

Lebesque measurable function $f_{2k} = f \upharpoonright [-2k, 2k]$ by Theorem 1 has a lifting function F_{2k} . Let $U = \{x \in T_H^{2k} : \operatorname{st}(F_{2k}(x)) = f_{2k}(\operatorname{st}(x))\}$. Obviously $\mu(T_h^2k) = \mu'(U) = 4k$. Let also $A \in T_H^{2k}$ be internal set such that $\mu'(A) > 3k$. It is easy to show that for all $x \in T_k^H$, $(x - A) \cap A \neq \emptyset$. Hence we can define an improved lifting function.

$$F_k(x) = \min\{ {}^*g(F_{2k}(y), F_{2k}(z), y, z) \mid x = y + z \land y, z \in A \}$$

for each $x \in T_k^H$. It follows immediately that F_k is the uniform lifting function for f_k , so by Theorem 2 function f_k is continuous. Therefore f is continuous too.

Finally let us remark that Theorem 3 can be generalized in several directions.

REFERENCES

- [1] H. J. Keisler, *Hyperfinite probability theory and probability logic*, manuscript, Univ of Wisconsin, 1979.
- [2] P. A. Loeb, Conversion from non-standard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122.
- [3] E. Seneta, Regularly Varing Functions, Lecture Notes Math. 508, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

Prirodno-matematički fakultet 34000 Kragujevac Yugoslavia (Received 19 04 1984)