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SEMANTICS FOR SOME INTERMEDIATE LOGICS

Milan Bo�zi�c

Abstract. We give semantics for intermediate logics of the form H +_S, where _S is the
schema _

(i;j)2S

(Ai ! Aj)

and S is a nonempty subset of f1; . . . ; ng2. It is proved that such a logic is complete with respect
to the class of Kripke frames (X;R) which satisfy the universal closure of the formula

_

(i;j);(k;i)2S

xijRxki

0. Introduction

We shall give Kripke semantics for some intermediate logics, i. e., for some
of the logics which lie in between the intuitionistic propositional calculus H and
the classical propositional calculus. Logics for which we shall give semantics are
obtained by adding to H axiom-schemata of the form

(_S)
_
(i;j)

fAi ! Aj j (i; j) 2 Sg

where S is a nonempty subset of f1; . . . ; ng2 (n � 1). Some special cases of these
schemate were considered in [2, 3] and [5].

1. Prelimaries

The reader which is acquainted with Kripke semantics for H , and related
techniques of canonical models and frames, can skip this section. Proofs of the
results quoted here can be found in [1] and [4]. The connectives 8; 9 and, or, ),
i�, and not belong to the meta-logic, which is here classical. The use of the other
mathematical signs should be clear from the context.

AMS Subject Classi�cation (1980): Primary 03B 55.
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1.1. De�nition. 1.1.1. The logic H is the propositional calculus in the
language L = f!;^;_;:g over the set of variables V = fpi j i 2 !g given with the
axiom-schemata

A! (B ! A)(H1) �
A! (B ! C)

�
!
�
(A! B)! (A! C)

�
(H2)

A ^ B ! A(H3)

A ^ B ! B(H4)

A! (B ! A ^ B)(H5)

A! A _ B(H6)

B ! A _ B(H7)

(A! C) ^ (B ! C)! (A _ B ! C)(H8)

:A! (A! B)(H9)

(A! :B)! (B ! :A)(H10)

and the ruke-schema

(MP)
A;A! B

B

where A;B and C range over the set of all formulas, denoted by For L .

1.1.2. The notions of proof, proof from hypotheses and theorem are de�ned
in the standard way. If x � ForL and A 2 ForL, then x ` A stands for A is
derived from x in H . The propositional calculus S is an extension of H i� it has
the same language and variables as H , among its theorems it has all the axioms
of H , and MP is its only rule. Th(S) will denote the set of all theorems of S . If
S is an extension of H and x � ForL, then x `S A stands for x [ Th(S) ` A.

1.2. De�nition. 1.2.1 X = (X;R) is an H frame i� R is a re
exive and

transitive relation on the nonempty set X (domX
def
= X , K(H)

def
= fX j X is an H

frameg).

1.2.2M = (X; v) is an H model i� (i) X 2 K(H) and (ii) v : domX! P (V )
such that

(her) xRy ) v(x) � v(y) for all x; y 2 domX:

(FrM
def
= X; domM

def
= dom FrM; v is a valuation, valM

def
= v; M(H)

def
= fM jM

is an H modelg).

1.2.3. Let X 2 K(H) and a 2 domX:Xa = (domXa; Ra) is a truncation of

the frame X at the point a i� (i) domX
def
= fx 2 domX j aRxg and (ii) xRay i�

xRy for all x; y 2 domXa.

1.2.4. Let M 2 M(H) and a 2 domM. Then Ma = ((FrM)a; (valM)a)
is a truncation of the model M at the point a i� (valM)a(x) = valM(x) for all
x 2 dom(FrM)a.
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1.2.5. Let M 2M(H) and x 2 domM; A 2 For L. The predicate formula A
holds in the point x of the model M((M; x) j= A, or, if the context is clear, brie
y,
x j= A) is de�ned by the recursion on the number of connectives of the formula A.
The axioms of this recursion are:

(pi) A =pi; x j= pi i� pi 2 valM(x)

(^) A =B ^ C; x j= B ^ C i� x j= B and x j= C

(_) A =B _ C; x j= B _ C i� x j= B or x j= C

(!) A =B ! C; x j= B ! C i� 8y(xRy and y j= B ) y j= C)

(:) A =:B; x j= :B i� 8y(xRy ) not y j= B)

(in the formulas above the quanti�ers range over dom M)

B holds in the model M(M j= A) i� 8x(x 2 domM) x j= A).

A holds in the frame X(X j= A) i� 8M(M 2M(H) and FrM = X) X j= A).

A is H valid (j=
H

A) i� 8X(X 2 K(H)) X j= A).

Let K � K(H);A is K valid (K j= A) i� 8X(X 2 K ) X j= A).

1.3. Theorem (Intuitionistic Heredity) For all M 2M(H); A 2 ForL

(Her) xRy and x j= A) y j= A for all x; y 2 domM:

1.4.Theorem A 2Th(H))j=
H

A.

1.5Theorem For every X 2 K(H); M 2M(H) and a 2 domX (or domM).

1.5.1. Xa 2 K(H); 1.5.2. Ma 2M(H).

1.6 Theorem For Every M 2 M(H); A 2 ForL; a 2 domM and every
x 2 domM such that aRx,

(M; x) j= A i� (Ma; x) j= A:

1.7. De�nition. Let S be an extension of H .

1.7.1. Xc(S) = (Xc(S); Rc) is the S canonical H frame i� (i) Xc(S) is the
set of all S nice sets of formulas over the languange L , i. e., the set of all x � ForL
which satisfy

1Æ x `S A) A 2 x(x is S deductively closed) and

2Æ A _ B 2 x) A 2 x or B 2 x(x is prime) and

3Æ not (8A 2 ForL)x `S A(x is S consistent)

(ii) xRcy i� x � y, for all x; y 2 Xc(S).

1.7.2. Mc(S) = Xc(S); vc is the S canonical model i� vc(x) = x \ V , for all
x 2 Xc(S)(vc is the canonical valuation).
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1.8 Theorem 1.8. If S is an exstension of H A a formula over the language
L, and x a set of formulas over the language L such that not x `S A then there
exists an S nice set of formulas y such that x � y and not A 2 y.

1.8.2. If S is an extension of H , then

A 2 Th(S) i� 8x(x is S nice ) A 2 x):

1.9 Theorem. If S is an extension of H , then

1.9.1 X(S) 2 K(H), 1.9.2 Xc(S) 2M(H).

1.10 Theorem. If S is an extension of H and x is an S nice set of
formulas, then (Mc(S); x j= A i� A 2 x.

1.11 Theorem A 2 Th(H) i� j=H A.

1.12 Theorem. Let S be an extension of H and x � ForL. Then x is S

consistent i� there exists an H model M such that 8A(x `S A)M j= A).

From this theorem it follows that, in particular (for x = ?); S is H consis-
tent i� it has an H model.

2. The logic H + _S and its semantics

2.1 De�nition. Let S be a nonempty subset of f1; . . . ; ng2 (n � 1). The
logic H + _S is the extension of H with the axiom-schema

(_S)
_
(i;j)

fAi ! Aj j (i; j) 2 Sg:

2.2 De�nition. Sijk stands for (i; j) 2 S and (k; i) 2 S.

2.3 Theorem H + _S is consistent i� 9i 9j 9k Sijk.

Proof . ()) We prove the contraposition. Suppose not 9i 9j 9k Sijk i.e.

(�) not 9i(9j(i; j) 2 S and 9k (k; i) 2 S):

Then formula (p0 ! p0) ! p0 ^ :p0 is an instance of the schema _S obtained by
substituting p0 ! p0 for all Ai such that 9j(i; j) 2 S and p0 ^ :p0 for all Ai such
that 9k(k; i) 2 S. This substitution is correct as, in the �rst place, such A0is occur
as S is nonempty and only such A0i occur in _S; in the second, they are di�erent
because of (�). Thus, p0^:p0 is a theorem of H+_S; i. e. H+_S is inconsistent.

(() Suppose 9i 9j 9k Sijk, i.e. for some (i0; j0; k0); (i0; j0) 2 S and (k0; i0) 2
S. We will construct an H model for H + _S, which by Theorem 1.12, yields its
consistency. This model is an element H model (fag; R; v)(xRy i� x = y =
a; v(a) = V . As an H model, this model veri�es all axioms and the rule of H . It
also veri�es the schema _S as it veri�es the disjunction (Ai0 ! Aj0)_ (Ak0 ! Ai0)
because it is true in all (i.e. one) points of our model. Namely, a j= (Ai0 !
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Aj0)_(Ak0 ! Ai0) is equivalent with (a j= Ai0 ) a j= Aj0) or (a j= Ak0 ) a j= Ai0)
which is true. This ends the proof.

2.4 De�nition. Let S be a subset of f1; . . . ; ng2(n � 1) such that
9i9j9k Sijk. Then K(_S) is the class of all H frames which satisfy the universal
closure of the �rst-order formula

(k(_S))
_
(i;j)

ftRxij j (i; j) 2 Sg )
_

(i;j;k)

fxijRxki j Sijkg:

Note that the condition imposed on S implies that the disjunction on the right-
hand side of k(_S) is nonempty. The following theorem shows that K(_S) is the
largest class of H frames which satisfy the schema _S.

2.5. Theorem Let S be a subset of f1; . . . ; ng2 (n � 1) such that 9i9j9k Sijk.
For every X 2 K(H)

X j= _S i� X 2 K(_S)

Proof .(() Let X 2 K(_S) and let M be an H model such that FrM = X.
AsM veri�es all the axioms and the rule of H , it is enough to prove thatM j= _S.
Suppose the opposite. Then there exists a t 2 domM such that not t j= _i;jfAi !
Aj j (i; j) 2 Sg which implies that for all (i; j) 2 S there exists an xij such that

(�) tRxij and xij j= Ai and not xij j= Aj :

As X 2 K(_S) we have that
V
(i;j)ftRxij j (i; j) 2 Sg implies, for some i0; j0; k0

such that Si0j0k0; xi0j0Rxk0i0 . Because of (�); xi0j0 j= Ai0 , which, because of
xi0j0Rxk0i0 implies, by Heredity, xk0i0 j= Ai0 . Since this contradicts (�), we have
M j= _S.

()) We prove the contraposition. Suppose x 62 K(_S). Then there exist
a; bij 2 domX (for all (i; j) 2 S) such that

(��)
^
(i;j)

faRbij j (i; j) 2 Sg and
^

(i;j;k)

fnot bij Rbki j Sijkg

De�ne v : domX! P (V ) with pi 2 v(t) i� 9j((i; j) 2 S and bijRt). It is easy to
check that, as R transitive, v is a valuation. In the obtained modelM = (X; v) we
have bij j= pi (for all (i; j) 2 S, as R is re
exive) and not bij j= pj (for all (i; j) 2 S,
since otherwise bi0j0 j= pj0 , for some (i0; j0) 2 S, which means pj0 2 v(bi0j0), and
this, by the de�nition of v yields bj0k0Rbi0j0 for some k0 such that (j0; k0) 2 S

and Sj0k0i0, which contradicts (��). Because of that we obtain aRbij and bij j= pi
and not bij j= pj , for all (i; j) 2 S, which yields not a j= pi ! pj for all (i; j) 2 S,
i.e. _(i;j)fpi ! pj j (i; j) 2 Sg fails, in a and consequently in M, which ends the
proof.

Now we prove the main theorem of this section.

2.6 Theorem. Let S be a subset of f1; . . . ; ng2 such that 9i9j9k Sijk. For
any A 2 ForL,

A 2 Th(H + ^S) i� K(_S) j= A:
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Proof . The ()) part follows from the previous theorem. (() To prove this
we prove that Xc(H + _S) 2 K(_S). Then we will have

K(_S) j= A) X
c(H + _S) j= A

)M
c(H + _S) j= A

) 8x(x 2 Xc(H + _S)) x j= A

) 8x(x 2 Xc(H + _S)) A 2 x) (by 1:10)

) A 2 Th(H + _S) (by 1:8:2)

So, we have to prove that k(_S) holds in Xc(H + _S), i. e. that

(�)
^
(i;j)

ft � xij j (i; j) 2 Sg )
_

(i;j;k)

fxij � xki j Sijkg

holds for all H + _S nice sets t; xij((i; j) 2 S). Note that R becomes � in the
canonical model. Suppose that (�) fails to hold for some H + _S nice sets t; xij ,
i. e. that the antecedent of (�) holds and that the consequent of (�) doesn't hold.
Then we have:

(1)
^

(i;j;k)

fnot xij � xki j Sijkg

Because of (1), for any triple (i; j; k) such that Sijk (at least one such triple exists
because of the assumption of the theorem), there exists a formula Aijk such that

(2) Aijk 2 xij and not Aijk 2 xki:

For all (�; k) such that 9j Sijk de�ne

Aik
def
= _jfAijk j Sijkg:

Obviously, `H Aijk ! Aik for all (i; j; k) such that Sijk; so, as Aijk 2 xij , we have

(3) Aik 2 xij for all (i; j; k) such that Sijk:

Also,

(4) not Aik 2 xki for all (i; k) such that 9j Sijk

because, in the opposite case, Aik 2 xki implies, xki being prime (it is an H + _S
nice set), 9j(Aijk 2 xki and Sijk), which contradicts (2).

For all i such that 9j9j Sijk de�ne

Ai
def
=
^
k

fAik j 9j Sijkg

Obiviously, ` Ai ! Aik for all (i; k) such that 9j Sijk; so, because of (3),

(5) Ai 2 xij for all (i; j) such that 9k Sijk:
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Also, because of (4) and the remark above,

(6) not Ai 2 xki for all (i; k) such that 9j Sijk:

Formulas Ai are de�ned for all i such that 9j9k Sijk, i. e. such that 9j(i; j) 2 S

and 9k(k; i) 2 S.

De�ne >
def
= p0 ! p0 and ?

def
= p0 ^ :p0 and, for all 1 � i � n,

A0i
def
=

8>>><
>>>:

Ai if 9j(i; j 2 S and 9k(k; i) 2 S 2 S

> if 9j(i; j) 2 S and not 9k(k; i) 2 S

? if not 9j(i; j) 2 S and 9k(k; i) 2 S

p0 if not 9j(i; j) 2 S and not 9k(k; i) 2 S:

The last case in the de�nition above is unimportant as such an A0i doesn't
occur in the schema _S. The formula

W
(i;j)fA

0
i ! A0j j (i; j) 2 Sg is a theorem of

H+_S and, consequently, belongs to all H+_S nice sets. In particular it belongs
to t and, as t is prime, for some (i0; j0) 2 S; A0i0 ! A0j0 2 t. We have supposed

that the antecedent of (�) holds, so, t � xfj for all (i; j) 2 S. In particular,
t � xi0j0 . Thus,

(7) A0i0 ! A0j0 2 xi0j0 :

Because of (i0; j0) 2 S, two cases may occur: 9k(k; i0) 2 S or not 9k(k; i0) 2 S. In
he �rst case ((i0; j0) 2 S and 9k(k; i0) 2 S) we have that A0i0 = Ai0 and 9kSi0j0k.
Because of (5) this implies A0i0 2 xi0j0 . In the second case ((i0; j0) 2 S and not
9k(k; i0) 2 S) we have that A0i0 = >. Because xi0j0 contains all theorems of H , we
also obtain that A0i0 2 xi0j0 . So, in both cases A0i0 2 xi0j0 and, because of (7) we
have

(8) A0i0 2 xi0j0 :

Again two cases may occur: 9k(j0; k) 2 S or not 9k(j0; k) 2 S. In the �rst case
(9k(j0; k) 2 S and (i0; j0) 2 S) we have A0i0 = Ai0 and 9kSj0ki0 which brings into
contradiction (6) and (8). In the second case (not 9k(j0; k) 2 S and (i0; j0) 2 S we
have A0i0 =?, which, because of (8), contradicts the consistency of xi0j0 . Thus, the
assumption that (�) fails leads to contradiction. This ends the proof.

The previous theorem states that the logic H + _S is complete with respect
to the largest class of H frames in which _S holds. Now we prove that this class
can be made smaller and simpler.

2.7. De�nition. Let S be a subset of f1; . . . ; ng2 such that 9i9j9k Sijk.
K(C(_S)) is the class of all H frames which satisfy the universal closure of the
�rst-order formula

(C(k(_S)))
_

(i;j;k)

fxijRXki j Sijkg
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Note that C(k(_S)) is the consequent of k(_S), so, as C(k(_S)) ) k(_S), we have
that K(C(_S) � K(_S). It is easy to prove that this inclusion is proper.

2.8. Theorem Let S be a subset of f1; . . . ; ng2 such that 9i9j9k Sijk, and
let X 2 K(_S) and a 2 domX. Then Xa 2 K(C(_S)).

Proof . Because domXa = fx 2 domX j aRxg and domXa � domX we have
that the universal closure of k(_S) holds in Xa. By substituting a for t in k(_S)
we obtain, because of the de�nition of Xa, that the antecedent of k(_S) holds for
all xij 2 domXa (i; j)) 2 S). Thus, in Xa holds the consequent of k(_S) too. This
consequent is C(k(_S)), so, Xa 2 K(C(_S)).

2.9. Theorem. Let S be a subset of f1; . . . ; ng2 such that 9i9j9k Sijk.
For any A 2 F or L,

A 2 Th(H + _S) i� K(C(_S)) j= A:

Proof . We prove that K(C(_S)) j= A i� K(_S) j= A, which, because of
Theorem 2.6, implies our theorem. The ()) part follows because of K(C(_S)) �
K(_S): ()) Suppose not K(_S) j= A. Then for some H model M such that
FrM 2 K(_S) and for some a 2 domM we have not(M; a) j= A. Because of
Theorem 1.6 we obtain not(Ma; a) j= A and, consequently not Fr(Ma) j= A. But
Fr(Ma) = (Fr(M))a which by Theorem 2.8, belongs to K(C(_S)). Thus, not
K(C(_S)) j= A, which ends the proof.

Let us mention, at the end of this section, that the condition 9i9j9k Sijk

imposed on the index set S can be eliminated from all statements above if we
de�ne the empty disjunction as ? and the empty conjuctions as >. In this way
the formulations (though not the proofs!) of all theorems and de�nitions can be
made simpler. However, as this condition is, by Theorem 2.3, equivalent with
the consistency of the logic H + _S, we have decided to formulate our results for
consistent logics only.

3. Some remarks

We have mentioned at the beginning of this paper that some intermediate
logics of the form H+_S have been considered in [3] and [5]. In [5] L�opez-Escobar
has suggested that the sequence of logics H + cn, obtained with

(cn) (A1 ! A2) _ (A2 ! A3) _ � � � _ (An�1 ! An) _ (An ! A1) (n � 2)

iz strictly decreasing. Bori�ci�c has proved in [3] that this is not the case. In this
paper he also proves that two sequences of intermediate logics H + an and H + bn,
obtained with

_
1�i<j�n

(Ai ! Aj); n � 2(an)

_
1�i<j�n

(Ai ! Aj) _ (An ! A1) n � 2(bn)
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and strictly decreasing and that
T
n�2 Th(H + an) =

T
n�2 Th(H + bn) = Th(H).

Our paper has originated in the search for the semantics for these two sequences
of logics. Now, using the results from section 2, it is easy to write down the
appropriate characteristic formulas for the semantics of the logics. Let us mention
that in L�opez-Escobar's case S = f(1; 2); . . . ; (n � 1; n); (n; 1)g the appropriate
formula is

xi2Rxn1 _ x23Rx12 _ � � � _ xn�1;nRxn�2;n�1 _ xn1Rxn�1;n

which is equaivalent with

(kn) x1Rx2 _ x2Rx3 _ � � � _ xn�1Rxn _ xnRx1:

It is easy to prove that for n 2 2N; kn is equivalent with k2 and less easy, but
still elementary (the transitivity of R and invariance of kn with respect to the
cyclic permutation of the variables must be used), to prove that for n 2 2N +
1; kn is equivalent with k3, which is another proof of the falsity of L�opez-Escobar's
suggestion. It is possible that our semantics for the intermediate logics of the form
H + _S can be used for the investigation of some classes of logics with speci�c S.
However, no results worth mentioning are known to us.
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