NOTE ON THE NUMBER OF SEQUENCES WITH GIVEN COMPLEXITY

Dragan Banjević

Abstract

Kolmogorov in 1964 has defined the notion of complexity of a finite binary sequence. In this paper some properties of the number of sequences with given complexity are considered.

Let S be the set of all finite binary sequences, and let $l(x), x \in S$ be the length of x. Let $K(x)$ be the complexity of x with respect to some optimal function F_{0}^{1} and let $K(x / y)$ be the conditional complexity of x given y (see [1] - [3]). It is well known that the complexity of most of the sequences is close to their length (see [2]), or

$$
\begin{gather*}
(\exists c)(\forall x)(K(x) \leq l(x)+c) \tag{1}\\
|\{x: l(x)=n, K(x) \geq n-m\}| \geq 2^{n}\left(1-1 / 2^{m}\right) \tag{2}
\end{gather*}
$$

$(|A|$ is the number of elements in $A)$.
In [3.1.h] it was proved that

$$
\begin{gather*}
m-2 \log m \leq \log |\{x: K(x) \leq m\}| \leq m \tag{3}\\
\log |\{x: K(x / m) \leq m\}| \asymp m \tag{4}
\end{gather*}
$$

$\left(F \leq G \Leftrightarrow(\exists c)(\forall x)(F(x) \leq G(x)+c), F \asymp G \Leftrightarrow F \leq G \wedge G \leq F, \log =\log _{2}\right)$
In this paper we consider some improvements for (3) and (4). Proofs are similar to the proofs for 1. (h) in [3], and they are based on Theorem 1.6 in [2].
(a) Let
$A_{n}=\{x: l(x)=n, K(x) \geq n\}, \quad A_{n}^{\prime}=\{x: l(x)=n, \quad K(x / n) \geq n\}$, $B_{n}=\{x: l(x)=n, K(x) \geq n-1\}, \quad B_{n}^{\prime}=\{x: l(x)=n, \quad K(x / n) \leq n-1\}$,

Then

$$
\begin{equation*}
n-2 \log n \leq \log \left|A_{n}\right| \leq n, \log \left|A_{n}^{\prime}\right| \asymp n \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
n-2 \log n \leq \log \left|B_{n}\right| \leq n, \log \left|B_{n}^{\prime}\right| \asymp n \tag{6}
\end{equation*}
$$

We note that this is an improvement of (2), in case $m=0$.
Proof. We have immediately $\left|A_{n}\right|+\left|B_{n}\right|=2^{n}, \log \left|A_{n}\right| \leq n, \log \left|B_{n}\right| \leq n$, and by $\left[3,1\right.$. g] $\min \{K(x): l(x)=n\} \asymp K(n) \leq l(n)$, which implies $\left(\forall n_{0}\right)(\exists n \geq$ $\left.n_{0}\right)(\exists x)(l(x)=n, K(x)<n)$, or $B_{n} \neq \emptyset$ for $n \geq n_{0}$. On the other hand $x \in B_{n}$ means $\left(\exists p_{x}\right)\left(l\left(p_{x}\right) \leq n-1, F_{0}^{1}\left(p_{x}\right)=x\right)$ and the number of programs p_{x} is at the most $2^{0}+2^{1}+\ldots+2^{n-1}=2^{n}-1<2^{n}$, which implies that $0<\left|B_{n}\right|<2^{n}$, $0<\left|A_{n}\right|<2^{n}$, or $A_{n} \neq \emptyset$ for $n \geq n_{0}$.

Let, for given $p=\bar{a} b$, the function $F(p)$ be defined in such a way that we first choose the set A of exactly b sequences y for which $K(y) \leq a$, and then $x=F(p)$ is the first y such that $y \notin A$. Then for $a=n, b=\left|B_{n}\right|$, we have $x=F(p) \notin B_{n}$, and $n \leq K(x) \leq K_{F}(x) \leq l(p) \leq \log \left|B_{n}\right|+2 \log n$. Further, let $F^{\prime}(\bar{a} b)=F\left(\bar{a}\left(2^{a}-b\right)\right)$, and then $F^{\prime}\left(\bar{n}\left|B_{n}\right|\right)=x \notin B_{n}$, which implies $n \leq K(x) \leq K_{F^{\prime}}(x) \leq l\left(\bar{n}\left|A_{n}\right|\right) \leq$ $\log \left|A_{n}\right|+2 \log n$.

In the case concerning B_{n}^{\prime}, we can take $F(b, a)=F(\bar{a} b)$, and then $F\left(\left|B_{n}^{\prime}\right|, n\right)$ $=F\left(\bar{n}\left|B_{n}^{\prime}\right|\right)=x \notin B_{n}^{\prime}$, or $n \leq K(x \|) \| \leq K_{F}^{-}(x / n) \leq l\left(\left|B_{n}^{\prime}\right|\right) \asymp \log \left|B_{n}^{\prime}\right| \leq n$. The proof for $\left|A_{n}^{\prime}\right|$ is similar.
(b) Let $g(n)$ be a recursive increasing function, and $g(n)<n-1$. Let

$$
\begin{array}{lll}
A_{n}=\{x: l(x)=n, K(x)>g(n)\}, & A_{n}^{\prime}=\{x: l(x)=n, & K(x / n)>g(n)\} \\
B_{n}=\{x: l(x)=n, & K(x) \leq g(n)\}, & B_{n}^{\prime}=\{x: l(x)=n,
\end{array}
$$

Then

$$
\begin{gather*}
\log \left|A_{n}\right| \asymp \log \left|A_{n}^{\prime}\right| \asymp n \tag{7}\\
g(n)-2 \log n \leq \log \left|B_{n}\right| \leq g(n), \quad \log \left|B_{n}^{\prime}\right| \asymp g(n) . \tag{8}
\end{gather*}
$$

Proof. Let c_{0} be such that $(\forall n)(\exists x)\left(l(x)=n, K(x) \leq \log n+c_{0}\right)$, by $[3,1$. g]. Let $g(n)-2 \log n \geq c_{0}$. Then $B_{n} \neq \emptyset$, and imitating the proof in (a), we can get (8). If $g(n)-2 \log n<c_{0}$, then (8) is trivial. Equality (7) is a direct consequence of (2), or simply $2^{n} \geq\left|A_{n}\right|=2^{n}-\left|B_{n}\right| \geq 2^{n}-\left(2^{g(n)+1}-1\right) \geq 2^{n}-2^{n-1}=2^{n-1}$, and $n \geq \log \left|A_{n}\right| \geq n-1$.
(c) Let

$$
\begin{aligned}
& D_{n}=\{x: l(x) \leq n, K(x)>n\}, \quad D_{n}^{\prime}=\{x: l(x) \leq n, K(x / n)>n\}, \\
& E_{n}=\{x: l(x) \leq n, K(x) \leq n\}, \quad E_{n}^{\prime}=\{x: l(x) \leq n, K(x / n) \leq n\}, \\
& c_{n}=\max \{K(x)-n: l(x)=n\}, \quad c_{n}^{\prime}=\max \{K(x / n)-n: l(x)=n\}, \\
& B_{n}=\left\{x: l(x)=n, K(x)=n+c_{n}\right\}, \quad B_{n}^{\prime}=\left\{x: l(x)=n, K(x / n)=n+c_{n}^{\prime}\right\}, \\
& F_{n}=\{x: l(x)=n, K(x)>n\}, \quad F_{n}^{\prime}=\{x: l(x)=n, K(x / n)>n\} .
\end{aligned}
$$

Then

$$
\begin{equation*}
n-2 \log n \leq \log \left|B_{n}\right| \leq n, \log \left|B_{n}^{\prime}\right| \asymp n \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& n-2 \log n \leq \log \left|D_{n}\right| \leq n, \log \left|D_{n}^{\prime}\right| \asymp n \tag{10}\\
& n-2 \log n \leq \log \left|E_{n}\right| \leq n, \log \left|E_{n}^{\prime}\right| \asymp n \tag{11}
\end{align*}
$$

and for infinitely many $n, c_{n}>0$, or $F_{n} \neq \emptyset$, and in that case

$$
\begin{equation*}
n-2 \log n \leq \log \left|F_{n}\right| \leq n, \log \left|F_{n}^{\prime}\right| \asymp n \tag{10}
\end{equation*}
$$

Proof. By definition of c_{n}, and by (1), $0 \leq c_{n} \leq c$, and $B_{n} \neq \emptyset$, for all n. Similarly to the previous case we can prove (9). In order to prove (10), we shall prove that $D_{n} \neq \emptyset$. Let $H(n)=2^{n}-1$, and $h(n)=[\sqrt{n}]$ (integer part of \sqrt{n}). Then $K(H(H(h(n)))) \asymp K(h(n)) \leq l(n) / 2$, but $l(H(H(h(n))))=H(h(n))>n$, which implies that for every $n \geq n_{0}$ there exists an x such that $K(x)<n$ and $l(x)>n$, which is equivalent to the existence of an y such that $l(y) \leq n$ and $K(y)>n$, which means $D_{n} \neq \emptyset$ for $n \geq n_{0}$. Then, it is easy to prove (10). Furthermore, $D_{n} \neq \emptyset$ for $n \geq n_{0}$, implies that for infinitely many n we have $F_{n} \neq \emptyset$, and then (12).

REFERENCES

[1] A.N. Kolmogorov, Logical basis for information theory and probability theory, IEEE Trans. Information Theory IT-14 (1986), 662-664.
[2] А.К. Звонкин, Л.А. Левин, Сложность конечных обьектов и обоснование понятий информачии и случайности с помощью теории алгоритмов, Успехи Мат. Наук. 25 (1970), 85-127.
[3] D. Banjević, On some basic properties of the Kolmogorov complexity, Publ. Inst. Math. (N.S.) (Beograd) 30 (44) (1981), 17-23.

Institut za matematiku
(Received 0310 1983)
Prirodno-matematički fakultet
Studentski trg 16, Beograd

