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A FIXED POINT THEOREM IN REFLEXIVE

BANACH SPACES

Ljubomir �Ciri�c

In this note we shall prove the following �xed-point theorem.

Theorem. Let B be a re
exive Banach space, K a nonempty bounded, closed

and convex subset of B and let T : K ! K be a map such that

diam [T (D)] < diam (D) (1)

holds for every closed and convex subset D of K, containing more than one element

and mapped into itself by T . Then T has a �xed point in K.

Proof. Let F denote a family of all non-empty closed and convex subsets of
K which T maps into itself. Then using the result of Smulian [7, p. 327] and Zorn's
Lemma it follows that F has a minimal element, say C. Since T (C) � C 2 F it
follows that Cl [coT (C)] � C and hence

T (Cl [coT (C)]) � T (C) � Cl [coT (C)]:

This implies Cl [coT (C)] 2 F and by the minimality of C we have

Cl [coT (C)] = C: (2)

As diam (coS) = diam (S) for every subset S of K [5, p. 17], (2) implies

diam [T (C)] = diam (C): (3)

Now, using (1) we conclude that C is a singleton, say C = u. Therefore, u is a
�xed-point of T , and the proof is complete.

We remark that maps considered in [2], [4] and [6] satisfy the condition (1),
and therefore our theorem is a certain generalization of corresponding �xed-point
theorems. We shall illustrate this on a theorem given in [6].
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Theorem A [6]. Let K and D be as in the previous theorem and T : K ! K
mapping satisfying the following conditions:

kTx� Tyk � maxfkx� Txk; ky � Tyk; akx� Tyk+ bky � Txk;

(kx� yk+ kx� Txk+ ky � Ty)=3g;

x; y 2 K; a � 0; b � 0; a+ b < 1;

(4)

sup
z2D

kz � Tzk < r diam (D); 0 < r = r(D) < 1: (5)

Then T has a unique �xed point in K.

Proof. If diam (D) > 0, then by (4) and (5) for every x; y 2 D we have

kTx� Tyk � maxfr; (a+ b); (1 + 2r)=3g � diam (D) < diam (D):

Therefore, T satis�es (1), and by the previous theorem, T has a �xed point in K.
Since condition (4) implies that T may have at most one �xed point, the proof is
complete.
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