A FIXED POINT THEOREM IN REFLEXIVE
BANACH SPACES

Ljubomir Ćirić

In this note we shall prove the following fixed-point theorem.

Theorem. Let B be a reflexive Banach space, K a nonempty bounded, closed and convex subset of B and let $T : K \to K$ be a map such that

$$\text{diam} \left[T(D) \right] < \text{diam} \left(D \right)$$

(1)

holds for every closed and convex subset D of K, containing more than one element and mapped into itself by T. Then T has a fixed point in K.

Proof. Let \mathcal{F} denote a family of all non-empty closed and convex subsets of K which T maps into itself. Then using the result of Smulian [7, p. 327] and Zorn’s Lemma it follows that \mathcal{F} has a minimal element, say C. Since $T(C) \subseteq C \in \mathcal{F}$ it follows that $\text{Cl} \left[\text{co} T(C) \right] \subseteq C$ and hence

$$T(\text{Cl} \left[\text{co} T(C) \right]) \subseteq T(C) \subseteq \text{Cl} \left[\text{co} T(C) \right].$$

This implies $\text{Cl} \left[\text{co} T(C) \right] \in \mathcal{F}$ and by the minimality of C we have

$$\text{Cl} \left[\text{co} T(C) \right] = C.$$

(2)

As $\text{diam} \left(\text{co} S \right) = \text{diam} \left(S \right)$ for every subset S of K [5, p. 17], (2) implies

$$\text{diam} \left[T(C) \right] = \text{diam} \left(C \right).$$

(3)

Now, using (1) we conclude that C is a singleton, say $C = u$. Therefore, u is a fixed-point of T, and the proof is complete.

We remark that maps considered in [2], [4] and [6] satisfy the condition (1), and therefore our theorem is a certain generalization of corresponding fixed-point theorems. We shall illustrate this on a theorem given in [6].

AMS Subject Classification (1980): Primary 47 H 10; Secondary 54 E 35; 54 H 25.
THEOREM A [6]. Let K and D be as in the previous theorem and $T : K \to K$ mapping satisfying the following conditions:

$$||Tx - Ty|| \leq \max\{||x - Tx||, ||y - Ty||, a||x - Ty|| + b||y - Tx||, (||x - y|| + ||x - Tx|| + ||y - Ty||)/3\};$$

$$x, y \in K, \quad a \geq 0, \quad b \geq 0, \quad a + b < 1,$$

$$\sup_{z \in D} ||z - Tz|| < r \cdot \text{diam}(D), \quad 0 < r = r(D) < 1.$$ (4.5)

Then T has a unique fixed point in K.

Proof. If $\text{diam}(D) > 0$, then by (4) and (5) for every $x, y \in D$ we have

$$||Tx - Ty|| \leq \max\{r, (a + b), (1 + 2r)/3\} \cdot \text{diam}(D) < \text{diam}(D).$$

Therefore, T satisfies (1), and by the previous theorem, T has a fixed point in K. Since condition (4) implies that T may have at most one fixed point, the proof is complete.

REFERENCES

