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ASYMPTOTIC PROPERTIES OF CONVOLUTION PRODUCTS
OF SEQUENCES

E. Omey

Abstract. Suppose three sequences {an }N, {bn }n and {c, } are related by the equation
Cn = > p—0On—kbg. In this paper we examine the asymptotic behavior of ¢, /an under various
conditions on {an}n and {bn}n. If D577, |br| < co we discuss conditions under which ¢n/an —
> h—obr and give sharp rate of convergence results. From our results we obtain asymptotic
expansions of the form

oo oo
Cn = an Z br + (an —an—1) Z kbr + O(lan — an—1]/n).
k=0 k=1

1. Introduction.

The convolution product of two sequences {a, }n and {b, }n of real numbers
is the sequence ¢ = a * b defined by

Cp = (a * b)n = Zanfkbk (TL > 0)
k=0

Given a sequence b one is often interested i relating the asymptotic behavior of the
two sequence a and c¢. Results of this type have been examined by a number of
authors. See for instance [1], [10], [14]. For applications in probability theory we
refer to [7], [8], [11]. Also related is the paper of Pavlov [12] where the asymptotic
behavior of the number of solutions to ¥ = a in the symmetric group of order n is
considered.

In this paper we want to study the so-called regular variation of sequences.

DEFINITION. A sequence {r, }n of nonnegative real numbers varies regularly
at infinity and with index p € R if r,, ~ n?L(n) (n — oo) where L is slowly varying
(s.v.), i.e. limyyoo L(tx)/L(t) = 1 for all x > 0. We will often use the notation
r={r,} € RV,. O
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For s.v. functions we refer to [5] and [13]. For regularly varying sequences,
see [2] and [15].

The next paragraph contains our main results. Proofs are given in Section 3.

2. Main results

Let {an}n, {bn}~n and {c,}n be sequences of nonnegative real numbers re-
lated by

cn=(axb), = Zan_kbk (n >0).
k=0

The next result is an immediate consequence of Feller [9, p. 447]. In it we describe
the asymptotic behavior of ¢, in case Y-, by may be infinite.

LEMMA 2.1. Let (3 ;_, bi)ny € RV with B > 0. Then for any a > 0 and
any s.v. L(z) the following two statements are equivalent: as n — 0o

- M1+ a)l(1+a
ar ~ n*L(n), c n*L(n b
2 ax ~ L) Z Y T Fitatd Z g
Furthermore, if {an}n is nondecreasing and if o+ 5 > 0, then (i) is equivalent to

L1+ o)1+ p8)

(il) e~ (a+p) T +ath)

n®"'L(n Zbk (n — o0). O

If {a,}N is nonincreasing, the following analogue of lemma 2.1 (i) < (iii) will
be proved.

THEOREM 2.2. {b,}n~ € RVj with § > —1 and let {a,}~n be nonincreasing.
For any a, 0 < a <1 and any s.v. L(z) the following two statements are equivalent:
as n — o0

Fr1+ o)1+ 0)
rl+a+p)

n
Zak ~ n*L(n) (id)ey, ~ n*L(n)b,. O
k=0

In case Y ooy br < oo (i.e. 8=0) and {a,}~n € RVy, a > 0, lemma 2.1 (iii)
gives

o0
lim ¢p/an = Zbk.
n—oo

k=0

The same result also holds in case {a, }n € RV, a <0, if we assume Yo~ k=<,
< oo for some € > 0.
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LeMMA 2.3. {ap}n € RV,, a € R and let {by}~n be a sequence of real
numbers such that ", o |br| < 0o. In case a < 0 assume that Y, o k= *=|by| < 00
for some € > 0. Then

n—o0

lim cn/an:Zbk. |
k=0

The rate at which ¢, /a, converges to Y - by heavily depends on the rate
at which a,41/a, converges to 1. More precisely we shall prove

THEOREM 2.4. Suppose {a,}N is a sequence of positive real numbers such
that for some B € R,
lim n(ap—1/ay, — 1) =pB. (2.1)

n—o0
Let {b,} be a sequence of real numbers such that Y-, k|by| < 0o and in case <0
such that > 1| kPT1H2|by| < 0o for some e > 0. Then

cn o0 o0
lim n| — — b = kb.. O 2.2
(2230 ) =53 22)

=0

This result should be compared with Theorem 2 of Bojani¢ and Lee [1]. There
it is assumed that for n > 1, |ap—1/a, — 1| < 0,,—1, where {4, } N is some sequence
of positive numbers such that as n — oo, nd, = O (1) and n(d,—1/6, —1) = O (1).
Under these conditions and the condition Y~ | k¥|b| < oo for all & > 0, Bojanié
and Lee prove that as n — oo,

En _ Z byl =
n k=0
Using (2.1) we get the exact asymptotic result (2.2). Note that (2.1) implies that
{an}Nn € RV_p and in case § # 0 (2.1) is equivalent to the regular variation of
{lan—1 — an[}n-

Again talking differences of the sequence {a,,—1 — a,}n we can obtain rate
of convergence results for (2.2) also. More generally, for n > 0 let pg,, = a, and
70,n = bp. For k > 0 define sequences py = {pr.n}n~ and r;, = {ry »}~ by induction
as follows

Dkyn—-1—DPkn Hn>k+1
Pk+1,n =
0 elsewhere

oo
Thitn = Y Thp n > 0.
p=n+1

An application of Theorem 2.4 then yields

COROLLARY 2.5. Suppose for some k > 1 {pr n}n is a sequence of nonney-
ative real numbers such that for some B € R,

. Pe,n—1 — Pk,n
lim pn—/—— =20 = 3.
n—o0 pk,n

(2.3)
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Let {b,}n be a sequence of real numbers such that > oo, nF1|b,| < co and in case
B >0 such that >, n**+1H0+2p,| < oo for some ¢ > 0. Then

k—1
lim n ((Cn - Z pm,an(1)> /Prn — Rk(1)> = BR4+1(1) (2.4)

n—o0
where Ry, (1) = sumy ormn(m=0,1,... ,k+1). O

In the case k = 1, Corollary 2.5 gives

i (( ~an Zm) /(-1 = an) - Zm) L=
n—oo P Pt ~ 2

Of course a similar corollary can be stated in terms of the sequence dj, defined by
do,n, = ap and for k£ > 0,

din1—dpn (> k+1)
korl,n =
0 (n<k+1).

In this case the result is

n—o0

k—1

lim ((_l)k (cn - Z (_l)mdm,an(1)> /dk,n - Rk(1)> = ﬂRk-H(l)- (2-5)
m=0

For another result of this type, see Theorem 2.8 below.

The main disadvantage of Theorem 2.4 and its corollaries is that it does not
include sequences of the form a, = ne """ (0 < @ < 1,8 € R). In Theorem 2.6
below we shall formulate a general result that deals with sequences which satisfy
one or more of the properties listed below. Let us assume that a,, # 0 for alln > N
and let us consider the following properties

(P1) sup |ap_1/an| =m < oo
n>N

(P2) sup (Z |an—k] |ak|> [lan] = M < o0

nZN \k=o

(P3) lim ap_1/an, =1

n—oo

(P4) le (Z ankak> [an = 1Lm (aa* a) — 2Zak, with Z|ak| < 0.

k=0 0

In case of sequences of positive numbers, sequences that satisfy (P3) and (P4) have
been studied already. We refer to the basic paper [3] and also to [4], [6], [8], where
some applications in probability theory are given. Now we prove
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THEOREM 2.6. {ap}n and {b,}n be sequences of real numbers such that
an #0 forn >N, > 7 lar] < oo and Y5~ |bk| < 0.

(i) If {an}n~ satisfies (P1), (P2) and if sup,,> n |bn|/|an| < 0o, then also

sup |en|/]an] < oo.
n>N
(ii) If {an}n satisfies (P2), (P3) and if limy, o0 bp/a, = 0, then

lim ¢,/a, = ibk.

n—00
k=0

(iii) If {an}n satisfies (P2), (P3) and (P4), and if lim,_,o0 bp/an = a for some
a € R, then

o0 o0
lim ¢,/a, = Zbk +a2ak. a
n—r00

k=0 k=0

In the special case of regularly varying sequences we obtain the following extension
of Lemma 2.3.

COROLLARY 2.7. Let {a,}n and {by}~n be sequences of nonnegative real
numbers such that Y~ a, < 00 and Y. > b, < 0o. If for some f < —1, {an}N €
RVj and if bp/a, — a(n — o) for some a > 0, then also {c,}n € RV3 and
Cnfan = > peobi +ad pegar(n = 00). O

Corollary 2.7 follows at once from Theorem 2.6 (iii) since regularly varying

sequences obviously satisfy (P3) and (P4). Further examples of sequences satisfying
(P3) and (P4) are (see e.g. [3]):

(i) a, =nfe ™ 0<a<l, BER
(ii) an, =exp—n(logn)=?, >0
(iii) sequences {a,}N such that ap41 ~ ap (n = o0) and

sup  ap_/a, < K < oc.
1<k<[n/2]

Using Theorem 2.6 we can also genralise Theorem 2.4 and its corollaries.
With pg and rj as before we have

COROLLARY 2.8. Suppose for some k > 1 that {pi o}~ and {ry »}n are such
that 3" o |Pe,n| < 00 and Y7 o |ren| < 0o.

(1) If {prn}n satisfies (P1), (P2) and if sup,>n |Tkn/Pkn| < 00, then

k—1
(Cn - Z pm,an(1)> /pk,n

(i) If {prn}n satisfies (P2), (P3), (P4) and if Tkn/Pkn — o (n — 00), then

sup
n>N

< 00.

k—1
lim (Cn - Z pm,an(1)> /pk:,n = Rk(l) g
m=0

n—o0
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When k£ =1, Corollary 2.8 (i) gives

(Cn — Qp Z bk) //(a'n—l - U/n)
k=0

Hence, if sup,sy 0, " [(an—1 — an)/an| < 0o we obtain Bojani¢ and Lee’s result
mentioned before. Corollary 2.8 (ii) in case k = 1, gives

nlgr;o (cn —ay, kz: bk> [(an-1 —ay) = kz: kby,
—0 =0

which in case (2.1) holds, gives (2.2).

Before proving these results it is worthwhile noting that our theorems can be
extended as follows. Let {ay}n satisfy the following properties

sup < 00.

n>N

(P’1) sup Z|an_k||ak| [lan| = M < o0
nZN \k=o

(P’3) hm ant1/an = 1/r(> 0), Z |ag|r* < oo
(P4) nll)rr;o(a *a)p/an = 2;%7“ =:2A(r).
0

Upon transforming a sequence {d, }n to the sequence {d},}n defined by d], = r"d,
we obtain the following result as an immediate consequence of Theorem 2.6.

THEOREM 2.9. Let {b,}n and {a,}n be sequences of real numbers and sup-
pose {an}N satisfies (P'1), (P'3), (P'4). If lim,— o bn/an = a for some a € R,
then
TL]LII;Q en/an = B(r) + aA(r)

where B(r) =Y 0" byr™ and A(r) = Y07 a,r™. O
3. Proofs

3.1. Proof of Theorem 2.2. (ii) = (i) This follows immediately from
lemma 2.1. (i) = (ii) The proof is divided into two parts.

Part 1: a = 0. First observe that (i) implies
an < 2n7'L(n) (3.1
for n large enough. For any fixed €,¢,0 < ¢ < t < 1 write

[ne] [nt]

Z+ >+ Z an_pbp = + I + I5.

= k=[ne]+1  k=[nt]+1
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First consider I;. From the monotonocity of {a,}n and (3.1) we have

[ne] [ne]
0 S Il S anf[ne] Z bk S 2(” - [ng])ilL(n - [n&‘]) Z bk
k=0 k=0

Since {by}n € RV and L is s.v. we obtain

0<1i hoo_ 2

imsu -
- n—>oop L(n)bn o (]- - 6)(1 + ﬁ)
To handle I, and I3 we use the fact that nb, asymptotically equals a nondecreasing
sequence B(n. This follows from the representation theorem for regularly varying
sequences [2] and 1+ 8 > 0. Hence for any § > 0 and n large we have

(3.2)

(1—06)B(n) < nb, < (1+ 6)B(n).

Using this and the monotonocity of B(n) we obtain

n—[nt]—1 n—[nt]—1
1+8)B(nt]+Hnt > ap <I;<1+6)Bm)([ntf]+1)" > ak. (3.3)
k=0 k=0
Hence I
_ B+l « |3 sup 3 < -1

(ot < i 0] w0 @4

In a similar way for I we have
[nt]
0< L <@+0)B(m)(nel + 1) > an .
k=[ne]+1

Since Y01 anmk = L= ise™ ' ak = o(L(n)) (n = 00) we obtain

lim Iy/L(n)b, =0 (3.5)

n—o0

Now combine (3.2), (3.3) and (3.4). Let § ] 0, ] 0, t 11 to obtain (ii).
Part 2:0 < a < 1. First note that (i) is equivalent to

an ~an® *L(n) (n— oo) (3.6)

As in part 1 divide ¢, into the three parts I, I and I3. As in part 1 we obtain

) L (1 —¢g)a—leghtt
0<1 3.7
=R nanb, = p+1 (3.7
Also (3.3) remains valid, and we have
1-1t)~ . sup1 I3 (1—-1t)~
1-— ﬁ+1(7 <1 — < (1 . .
( 0)t «@ =05 [inf] nanpb, — (1+9) at (38)
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As for I, we have ([z] denotes the integral part of z)

n—[ne]—1 (n—[ne]—1)/n
I = / a5y (s ds = / 10[15) b~ 5] A5
n—[nt| (n—[nt])/n

Using the uniform convergence properties of regularly varying sequences and func-
tions (see e.g. [2], [13]) we obtain
1—¢

lim —22 :/s“*(l—s)ﬁds. (3.9)

n—o0 Nap by

1-¢

Now combine (3.7), (3.8) and (3.9). Let § L 0,10, t 11 to obtain

1
lim — = /(1—5)55‘1*1615.
0

n—00 Nanpby

Using (3.6), the result follows. O

3.2. Proof of Lemma 2.3. We only have to prove the result in case a <0
since the other case follows from Lemma 2.1. Let us write

[n/2] n
Cp = Z Ap—rbr + Z ap—rbr =: 11 + I>.
k=0 k=[n/2]+1

Since {an}~n € RV, we have

sup  ap—r/ap, < K < o0.
0<k<[n/2]

Hence Lebesgue’s theorem yields limy, o0 I1 /@y, = Y pe bi, since for fixed k, ap—p, ~
an (n — 00).
Next consider I»; since {a,}n € RV, we have [13, p. 20] for any € > 0,

sup(k™%ay) ~n"%a, (n — 00).
k<n

Hence for k such that [n/2]+1 <k <n— N and n, N large, we have
np < 2NO—Ep=0Feq .
Hence for all k such that [n/2]+ 1 < k < n we have
At < Mn=%%q, (3.10)

for some M and n sufficiently large. But then

I n
OSMSM’ > kbl = 0 (n— o).
n k=[n/2]+1
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This proves the lemma. O

3.3. Proof of Theorem 2.4. and Corollary 2.5.
3.3.1. PROOF OF THEOREM 2.4. Let us write

c o0 [n/2] a n a oo
a—”—Zbk:Zbk<2k—l>+ = o W S
n k=0 k=1 n

k=[n/2]+1 n k=[n/2]+1

Since n|ls] <n 30y _p, o 1bk| < 23007, /o) klbi| we have

lim nl; = 0. (3.11)

n—o0

Next consider I». In case 8 < 0, from (2.1) we have a,,—1 < a, for n > N. Hence
forn — k > N we have ay < a,—; < a,. It follows that

osmms((@%xjvak) /aN+1)n S <M S Kb

k=[n/2] k=[n/2]

so that
lim nly = 0. (3.12)

n—o0

In case § > 0, from (2.1) it follows that {a,}~n € RV_g. Using (3.10) we obtain

o0
0 < |l < Mt 3= o <M D Kby
k=[n/2] k=[n/2]

so that (3.12) is also valid here.
Finally for I; note that (2.1) implies that for some M and all n > 1,

|an—1/an — 1| < M/n.
From [1, lemma 2] it follows that for 1 < &k < [n/2] and n large enough,
nlan—k/an — 1] <nk/(n —k)M' < kM".

Hence in I; we can apply Lebesgue’s theorem giving
lim nl; = i lim plnt =g, = ﬂikbk. (3.13)
n—oo 1 n— 00 Apn i

Combining (3.11) — (3.13) gives the desired result. O

3.3.2. PrROOF OF COROLLARY 2.5. For a sequence {d, }n denote by D(z) =
oo o dnz™ its generating function. Then we have for k =0,1,...

Rit1(2) = (Rp(1) = R(2)) /(1 = 2), Prg1(2) = (2 — 1) Pu(2) + prrz".
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By induction it follows that for & > 1,

k—1 k—1
C(2) = > Pu(2)Rm(1) + Y Pmmz™Rins1(2) = Pe(2)Ri(2). (3.14)
m=0 m=0
Now let us consider oo n®*t|ry, | for m = 0,1,... ,k and some § > 0. From

the definition of {ry, ,}n it follows that

00 o] 00 oo q—1

0+1 o+1 _ o+1
E n" " rmn| < E ,” Irm—1,4| = n' T o1,
n=1 n=1 g=n+1 g=2n=1

so that 307 n0F L r, | < 570 0t 2 |r, 1 ).
By induction it follows that

00 00 00
Zn6+1|7"m,n| < Z n6+m+1|r07n| — Zn6+m+1|bn|_
n=1 n=1 n=1

Now Y27 n**1b,| < oo and in case B > 0, 300 nhH1H5+2)h, | < oo for some
€ > 0. Hence for m =0,1,... ,k,

o0 oo
Zn|rm7n| < oo and in case 3 >0, Zn+5+5+1|rm,n| < 0. (3.15)
n=1 n=1

Hence (2.4) will follow from (2.3), (3.14) and Theorem 2.4 if we can prove that for
m=0,1,... )k
lim nry n/prn = 0. (3.16)

n—o0

Since {prn}n € RV_g, in case f < 0, (3.16) follows at once from (3.15) and
Pk — 00 (N — 00).
In case B8 > 0 we write for ¢ > 0,

e+1
Nrmn nPretle

)

DPk,n nB+Epk,n

Since n?*epy,, — 00 (n — o0), again (3.16) follows from (3.15). This completes
the proof of the corollary. (I

3.4. Proof of the Theorem 2.6 and Corollary 2.8.

3.4.1. PROOF OF THEOREM 2.6. (i). For n > 2N we have

n—N-—1 n
len| < “lan—ellar] + > [barllal
p=n | An=k k=n—N
oo
< sup ‘ Z|an kllax] +  sup |ak|Z|bk|
n—N<k<n 5
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For n and k such that N < n—k, using (P1), it follows that |a,_x/a,| < m*. Using
(P2) it follows that sup,,>oy |cn|/lan| < 0o and hence also that sup,,s n [cn/an| <
oo. O

3.4.2. PROOF OF THEOREM 2.6 (ii). For some fixed R and n > R > N we
have

n

1‘+ Z

R
an_rlla
SZIka lan—illas| Z b

_ Zbk
k=0

k=R+1 o] an] k=R+1
oo
<Z|bk ‘—Fsup - M+ Z |bk|
k>R | Ok Py
For fixed R, using (P3) we have
b oo
0 < limsup ——Zbk <sup|—|-M+ Z b |.
n—oo |Qn k=0 k>R | Ok k=R+1

Now let R — oo to obtain (ii). O

3.4.3. PROOF OF THEOREM 2.6 (iii). Since b = aa + d for some sequence d
such that lim,,_,o d,,/a, =0 we have c = a b = aaxa + a xd. Using (P4) and §
3.4.2 we obtain

c o0 00 o0 o0
lim = = QCKZGI@ +de = Zbk +a2ak. O
nTee Gn k=0 k=0 k=0 k=0

3.4.4. PROOF OF COROLLARY 2.8. As in the proof of Corollary 2.5 we have

k—1 k—1
C(z) - Z Pp(2)Rim(1) + Z Pm,m?2" Rmy1(2) = Pr(2) Ry (2). (3.17)
m=0 m=0

Now, if sup,,> n [7k,n/Pk,n| < 00, by induction for m =0,1,2,... ,k—1, using (P1),
we have
Terl,n

Pk,n

< 0.

+sup‘

T'm,n
sup
n>N

n>N | Pkn

”
< supn>nN ‘

which using Theorem 2.6 (i) proves (i).
If im, o0 7k n/Pk,n = @, by induction for m = 0,1,2,... ,k — 1 using (P3),
we have

lim = lim [mtbnol Timidn g (3.18)
n—=00 Pi.n n—0o00 DPk,n

From (3.17), (3.18) and Theorem 2.6 it follows that

n— 00
m=0

lim < me,an )/pknz—apk 1k— 1+a2pkm+Rk()
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Since Yo Pk,m = Pk—1,k—1 the proof of (ii) is complete. O

(1]
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