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ASYMPTOTIC PROPERTIES OF CONVOLUTION PRODUCTS

OF SEQUENCES

E. Omey

Abstract. Suppose three sequences fangN, fbngN and fcngN are related by the equation
cn =
P

n

k=0
an�kbk. In this paper we examine the asymptotic behavior of cn=an under various

conditions on fangN and fbngN. If
P
1

k=0
jbkj <1 we discuss conditions under which cn=an !P

n

k=0
bk and give sharp rate of convergence results. From our results we obtain asymptotic

expansions of the form

cn = an

1X

k=0

bk + (an � an�1)
1X

k=1

kbk +O(jan � an�1j=n):

1. Introduction.

The convolution product of two sequences fangN and fbngN of real numbers
is the sequence c = a � b de�ned by

cn = (a � b)n =

nX
k=0

an�kbk (n � 0):

Given a sequence b one is often interested i relating the asymptotic behavior of the
two sequence a and c. Results of this type have been examined by a number of
authors. See for instance [1], [10], [14]. For applications in probability theory we
refer to [7], [8], [11]. Also related is the paper of Pavlov [12] where the asymptotic
behavior of the number of solutions to xk = a in the symmetric group of order n is
considered.

In this paper we want to study the so-called regular variation of sequences.

Definition. A sequence frngN of nonnegative real numbers varies regularly
at in�nity and with index � 2 R if rn � n�L(n) (n!1) where L is slowly varying
(s.v.), i.e. limt!1 L(tx)=L(t) = 1 for all x > 0. We will often use the notation
r = frng 2 RV�. �
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For s.v. functions we refer to [5] and [13]. For regularly varying sequences,
see [2] and [15].

The next paragraph contains our main results. Proofs are given in Section 3.

2. Main results

Let fangN, fbngN and fcngN be sequences of nonnegative real numbers re-
lated by

cn = (a � b)n =

nX
k=0

an�kbk (n � 0):

The next result is an immediate consequence of Feller [9, p. 447]. In it we describe
the asymptotic behavior of cn in case

P1

k=0 bk may be in�nite.

Lemma 2.1. Let (
Pn

k=0 bk)N 2 RV� with � � 0. Then for any � � 0 and

any s.v. L(x) the following two statements are equivalent: as n!1

(i)

nX
k=0

ak � n�L(n); (ii)

nX
k=0

ck �
�(1 + �)�(1 + �)

�(1 + �+ �)
n�L(n)

nX
k=0

bk:

Furthermore, if fangN is nondecreasing and if �+ � > 0, then (i) is equivalent to

(iii) cn � (�+ �)
�(1 + �)�(1 + �)

�(1 + �+ �)
n��1L(n)

nX
k=0

bk (n!1): �

If fangN is nonincreasing, the following analogue of lemma 2.1 (i) , (iii) will
be proved.

Theorem 2.2. fbngN 2 RV� with � > �1 and let fangN be nonincreasing.

For any �, 0 � � � 1 and any s.v. L(x) the following two statements are equivalent:

as n!1

(i)
nX

k=0

ak � n�L(n) (ii)cn �
�(1 + �)�(1 + �)

�(1 + �+ �)
n�L(n)bn: �

In case
P1

k=0 bk < 1 (i.e. � = 0) and fangN 2 RV�, � > 0, lemma 2.1 (iii)
gives

lim
n!1

cn=an =

1X
k=0

bk:

The same result also holds in case fangN 2 RV�, � � 0, if we assume
P1

k=0 k
��+"bk

<1 for some " > 0.
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Lemma 2.3. fangN 2 RV�, � 2 R and let fbngN be a sequence of real

numbers such that
P1

k=0 jbkj <1. In case � < 0 assume that
P1

k=0 k
��+"jbkj <1

for some " > 0. Then

lim
n!1

cn=an =
1X
k=0

bk: �

The rate at which cn=an converges to
P1

k=0 bk heavily depends on the rate
at which an+1=an converges to 1. More precisely we shall prove

Theorem 2.4. Suppose fangN is a sequence of positive real numbers such

that for some � 2 R,

lim
n!1

n(an�1=an � 1) = �: (2.1)

Let fbng be a sequence of real numbers such that
P1

k=1 kjbkj <1 and in case � � 0
such that

P1

k=1 k
�+1+"jbkj <1 for some " > 0. Then

lim
n!1

n

 
cn
an

�

1X
k=0

bk

!
= �

1X
k=1

kbk: � (2.2)

This result should be compared with Theorem 2 of Bojani�c and Lee [1]. There
it is assumed that for n � 1, jan�1=an � 1j � Æn�1, where fÆngN is some sequence
of positive numbers such that as n!1, nÆn = O (1) and n(Æn�1=Æn�1) = O (1).
Under these conditions and the condition

P1
k=1 k

�jbkj <1 for all � > 0, Bojani�c
and Lee prove that as n!1,����� cnan �

1X
k=0

bn

����� = O(Æn):

Using (2.1) we get the exact asymptotic result (2.2). Note that (2.1) implies that
fangN 2 RV�� and in case � 6= 0 (2.1) is equivalent to the regular variation of
fjan�1 � anjgN.

Again talking di�erences of the sequence fan�1 � angN we can obtain rate
of convergence results for (2.2) also. More generally, for n � 0 let p0;n = an and
r0;n = bn. For k � 0 de�ne sequences pk = fpk;ngN and rk = frk;ngN by induction
as follows

pk+1;n =

�
pk;n�1 � pk;n if n � k + 1

0 elsewhere

rk+1;n =
1X

p=n+1

rk;p n � 0:

An application of Theorem 2.4 then yields

Corollary 2.5. Suppose for some k � 1 fpk;ngN is a sequence of nonneg-

ative real numbers such that for some � 2 R,

lim
n!1

n
pk;n�1 � pk;n

pk;n
= �: (2.3)
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Let fbngN be a sequence of real numbers such that
P1

n=1 n
k+1jbnj <1 and in case

� � 0 such that
P1

n=1 n
k+1+�+"jbnj <1 for some " > 0. Then

lim
n!1

n

  
cn �

k�1X
m=0

pm;nRm(1)

!
=pk;n �Rk(1)

!
= �Rk+1(1) (2.4)

where Rm(1) = sum1n=0rm;n(m = 0; 1; . . . ; k + 1): �

In the case k = 1, Corollary 2.5 gives

lim
n!1

n

  
cn � an

1X
k=0

bk

!
=(an�1 � an)�

1X
k=1

kbk

!
= �

1X
k=2

k(k � 1)

2
bk:

Of course a similar corollary can be stated in terms of the sequence dk de�ned by
d0;n = an and for k � 0,

dk+1;n =

�
dk;n�1 � dk;n (n � k + 1)

0 (n < k + 1).

In this case the result is

lim
n!1

 
(�1)k

 
cn �

k�1X
m=0

(�1)mdm;nRm(1)

!
=dk;n �Rk(1)

!
= �Rk+1(1): (2.5)

For another result of this type, see Theorem 2.8 below.

The main disadvantage of Theorem 2.4 and its corollaries is that it does not
include sequences of the form an = n�e�n

�

(0 < � < 1; � 2 R). In Theorem 2.6
below we shall formulate a general result that deals with sequences which satisfy
one or more of the properties listed below. Let us assume that an 6= 0 for all n � N
and let us consider the following properties

(P1) sup
n�N

jan�1=anj = m <1

(P2) sup
n�N

 
nX

k=0

jan�kj jakj

!
=janj =M <1

(P3) lim
n!1

an�1=an = 1

(P4) lim
n!1

 
nX

k=0

an�kak

!
=an = lim

n!1

(a � a)

an
= 2

1X
k=0

ak; with

1X
0

jakj <1:

In case of sequences of positive numbers, sequences that satisfy (P3) and (P4) have
been studied already. We refer to the basic paper [3] and also to [4], [6], [8], where
some applications in probability theory are given. Now we prove
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Theorem 2.6. fangN and fbngN be sequences of real numbers such that

an 6= 0 for n � N ,
P1

k=0 jakj <1 and
P1

k=0 jbkj <1.

(i) If fangN satis�es (P1), (P2) and if supn�N jbnj=janj <1, then also

sup
n�N

jcnj=janj <1:

(ii) If fangN satis�es (P2), (P3) and if limn!1 bn=an = 0, then

lim
n!1

cn=an =

1X
k=0

bk:

(iii) If fangN satis�es (P2), (P3) and (P4), and if limn!1 bn=an = � for some

� 2 R, then

lim
n!1

cn=an =

1X
k=0

bk + �

1X
k=0

ak: �

In the special case of regularly varying sequences we obtain the following extension
of Lemma 2.3.

Corollary 2.7. Let fangN and fbngN be sequences of nonnegative real

numbers such that
P1

n=0 an <1 and
P1

n=0 bn <1. If for some � � �1, fangN 2
RV� and if bn=an ! �(n ! 1) for some � � 0, then also fcngN 2 RV� and

cn=an !
P1

k=0 bk + �
P1

k=0 ak(n!1). �

Corollary 2.7 follows at once from Theorem 2.6 (iii) since regularly varying
sequences obviously satisfy (P3) and (P4). Further examples of sequences satisfying
(P3) and (P4) are (see e.g. [3]):

(i) an = n�e�n
�

, 0 < � < 1, � 2 R

(ii) an = exp�n(logn)�� , � > 0

(iii) sequences fangN such that an+1 � an (n!1) and

sup
1�k�[n=2]

an�k=an � K <1:

Using Theorem 2.6 we can also genralise Theorem 2.4 and its corollaries.
With pk and rk as before we have

Corollary 2.8. Suppose for some k � 1 that fpk;ngN and frk;ngN are such

that
P1

n=0 jpk;nj <1 and
P1

n=0 jrk;nj <1.

(i) If fpk;ngN satis�es (P1), (P2) and if supn�N jrk;n=pk;nj <1, then

sup
n�N

�����
 
cn �

k�1X
m=0

pm;nRm(1)

!
=pk;n

����� <1:

(ii) If fpk;ngN satis�es (P2), (P3), (P4) and if rk;n=pk;n ! � (n!1), then

lim
n!1

 
cn �

k�1X
m=0

pm;nRm(1)

!
=pk;n = Rk(1): �



72 E. Omey

When k = 1, Corollary 2.8 (i) gives

sup
n�N

�����
 
cn � an

1X
k=0

bk

!
==(an�1 � an)

����� <1:

Hence, if supn�N Æ�1n j(an�1 � an)=anj < 1 we obtain Bojani�c and Lee's result
mentioned before. Corollary 2.8 (ii) in case k = 1, gives

lim
n!1

 
cn � an

1X
k=0

bk

!
=(an�1 � an) =

1X
k=0

kbk

which in case (2.1) holds, gives (2.2).

Before proving these results it is worthwhile noting that our theorems can be
extended as follows. Let fangN satisfy the following properties

(P'1) sup
n�N

 
nX

k=0

jan�kjjakj

!
=janj =M <1

(P'3) lim
n!1

an+1=an = 1=r(> 0);

1X
n=0

jakjr
k <1

(P'4) lim
n!1

(a � a)n=an = 2

1X
k=0

akr
k =: 2A(r):

Upon transforming a sequence fdngN to the sequence fd0ngN de�ned by d0n = rndn
we obtain the following result as an immediate consequence of Theorem 2.6.

Theorem 2.9. Let fbngN and fangN be sequences of real numbers and sup-

pose fangN satis�es (P01), (P03), (P04). If limn!1 bn=an = � for some � 2 R,

then

lim
n!1

cn=an = B(r) + �A(r)

where B(r) =
P1

0 bnr
n and A(r) =

P1
0 anr

n. �

3. Proofs

3.1. Proof of Theorem 2.2. (ii) ) (i) This follows immediately from
lemma 2.1. (i) ) (ii) The proof is divided into two parts.

Part 1:� = 0. First observe that (i) implies

an � 2n�1L(n) (3.1)

for n large enough. For any �xed "; t; 0 < " < t < 1 write

cn =

0
@[n"]X
k=0

+

[nt]X
k=[n"]+1

+

[n]X
k=[nt]+1

1
Aan�kbk =: I1 + I2 + I3:
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First consider I1. From the monotonocity of fangN and (3.1) we have

0 � I1 � an�[n"]

[n"]X
k=0

bk � 2(n� [n"])�1L(n� [n"])

[n"]X
k=0

bk:

Since fbngN 2 RV� and L is s.v. we obtain

0 � lim sup
n!1

I1
L(n)bn

�
2"�+1

(1� ")(1 + �)
: (3.2)

To handle I2 and I3 we use the fact that nbn asymptotically equals a nondecreasing
sequence B(n. This follows from the representation theorem for regularly varying
sequences [2] and 1 + � > 0. Hence for any Æ > 0 and n large we have

(1� Æ)B(n) � nbn � (1 + Æ)B(n):

Using this and the monotonocity of B(n) we obtain

(1 + Æ)B([nt] + 1)n�1
n�[nt]�1X

k=0

ak � I3 � (1 + Æ)B(n)([nt] + 1)�1
n�[nt]�1X

k=0

ak: (3.3)

Hence

(1� Æ)t�+1 � lim
n!1

h sup
inf

i I3
L(n)bn

� (1 + Æ)t�1: (3.4)

In a similar way for I2 we have

0 � I2 � (1 + Æ)B([nt])([n"] + 1)�1
[nt]X

k=[n"]+1

an�k:

Since
P[nt]

k=[n"]+1 an�k =
Pn�[n"]�1

k=0 �
Pn�[nt]�1

k=0 ak = o(L(n)) (n!1) we obtain

lim
n!1

I2=L(n)bn = 0 (3.5)

Now combine (3.2), (3.3) and (3.4). Let Æ # 0, " # 0, t " 1 to obtain (ii).

Part 2: 0 < � � 1. First note that (i) is equivalent to

an � �n��1L(n) (n!1) (3.6)

As in part 1 divide cn into the three parts I1, I2 and I3. As in part 1 we obtain

0 � lim sup
n!1

I1
nanbn

�
(1� ")��1"�+1

� + 1
: (3.7)

Also (3.3) remains valid, and we have

(1� Æ)t�+1
(1� t)�

�
� lim

n!1

h sup
inf

i I3
nanbn

� (1 + Æ)
(1� t)�

�t
: (3.8)
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As for I2 we have ([x] denotes the integral part of x)

I2 =

n�[n"]�1Z
n�[nt]

a[s]bn�[s]ds =

(n�[n"]�1)=nZ
(n�[nt])=n

na[ns]bn�[ns]ds:

Using the uniform convergence properties of regularly varying sequences and func-
tions (see e.g. [2], [13]) we obtain

lim
n!1

I2
nanbn

=

1�"Z
1�t

s��1(1� s)�ds: (3.9)

Now combine (3.7), (3.8) and (3.9). Let Æ # 0, " # 0, t " 1 to obtain

lim
n!1

cn
nanbn

=

1Z
0

(1� s)�s��1ds:

Using (3.6), the result follows. �

3.2. Proof of Lemma 2.3. We only have to prove the result in case � � 0
since the other case follows from Lemma 2.1. Let us write

cn =

[n=2]X
k=0

an�kbk +
nX

k=[n=2]+1

an�kbk =: I1 + I2:

Since fangN 2 RV� we have

sup
0�k�[n=2]

an�k=an � K <1:

Hence Lebesgue's theorem yields limn!1 I1=an =
P1

k=0 bk since for �xed k; an�k �
an (n!1).

Next consider I2; since fangN 2 RV� we have [13, p. 20] for any " > 0,

sup
k�n

(k��+"ak) � n��+"an (n!1):

Hence for k such that [n=2] + 1 � k � n�N and n, N large, we have

an�k � 2N��"n��+"an:

Hence for all k such that [n=2] + 1 � k � n we have

an�k �Mn��+"an (3.10)

for some M and n suÆciently large. But then

0 �
jI2j

an
�M 0

nX
k=[n=2]+1

k��+"jbkj ! 0 (n!1):
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This proves the lemma. �

3.3. Proof of Theorem 2.4. and Corollary 2.5.

3.3.1. Proof of Theorem 2.4. Let us write

cn
an

�

1X
k=0

bk =

[n=2]X
k=1

bk

�
an�k
an

� 1

�
+

nX
k=[n=2]+1

bk
an�k
an

�

1X
k=[n=2]+1

bk =: I1+ I2+ I3:

Since njI3j � n
P

k=[n=2] jbkj � 2
P1

k=[n=2] kjbkj we have

lim
n!1

nI3 = 0: (3.11)

Next consider I2. In case � < 0, from (2.1) we have an�1 � an for n � N . Hence
for n� k � N we have aN � an�k � an. It follows that

0 � njI2j �

��
max

0�k�N
ak

�
=aN + 1

�
n

nX
k=[n=2]

jbkj �M

1X
k=[n=2]

kjbkj

so that

lim
n!1

nI2 = 0: (3.12)

In case � � 0, from (2.1) it follows that fangN 2 RV��. Using (3.10) we obtain

0 � njI2j �Mn�+"+1
1X

k=[n=2]

jbkj �M 0
X

k=[n=2]

k�+"+1jbkj

so that (3.12) is also valid here.

Finally for I1 note that (2.1) implies that for some M and all n � 1,

jan�1=an � 1j �M=n:

From [1, lemma 2] it follows that for 1 � k � [n=2] and n large enough,

njan�k=an � 1j � nk=(n� k)M 0 � kM 00:

Hence in I1 we can apply Lebesgue's theorem giving

lim
n!1

nI1 =

1X
k=1

lim
n!1

n
an�k � an

an
bk = �

1X
k=1

kbk: (3.13)

Combining (3.11) { (3.13) gives the desired result. �

3.3.2. Proof of Corollary 2.5. For a sequence fdngN denote by D(z) =P1

n=0 dnz
n its generating function. Then we have for k = 0; 1; . . .

Rk+1(z) = (Rk(1)�Rk(z))=(1� z); Pk+1(z) = (z � 1)Pk(z) + pk;kz
k:
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By induction it follows that for k � 1,

C(z)�

k�1X
m=0

Pm(z)Rm(1) +

k�1X
m=0

pm;mz
mRm+1(z) = Pk(z)Rk(z): (3.14)

Now let us consider
P1

n=1 n
Æ+1jrm;nj for m = 0; 1; . . . ; k and some Æ � 0. From

the de�nition of frm;ngN it follows that

1X
n=1

nÆ+1jrm;nj �
1X
n=1

nÆ+1
1X

q=n+1

jrm�1;q j =
1X
q=2

q�1X
n=1

nÆ+1jrm�1;qj

so that
P1

n=1 n
Æ+1jrm;nj �

P1
n=1 n

Æ+2jrm�1;nj.

By induction it follows that

1X
n=1

nÆ+1jrm;nj �

1X
n=1

nÆ+m+1jr0;nj =

1X
n=1

nÆ+m+1jbnj:

Now
P1

n=1 n
k+1jbnj < 1 and in case � � 0,

P1
n=1 n

k+1+�+"jbnj < 1 for some
" > 0. Hence for m = 0; 1; . . . ; k,

1X
n=1

njrm;nj <1 and in case � � 0;
1X
n=1

n+�+"+1jrm;nj <1: (3.15)

Hence (2.4) will follow from (2.3), (3.14) and Theorem 2.4 if we can prove that for
m = 0; 1; . . . ; k

lim
n!1

nrm;n=pk;n = 0: (3.16)

Since fpk;ngN 2 RV�� , in case � < 0, (3.16) follows at once from (3.15) and
pk;n !1 (n!1).

In case � � 0 we write for " > 0,

nrm;n

pk;n
=
n�+"+1rm;n

n�+"pk;n
:

Since n�+"pk;n ! 1 (n ! 1), again (3.16) follows from (3.15). This completes
the proof of the corollary. �

3.4. Proof of the Theorem 2.6 and Corollary 2.8.

3.4.1. Proof of Theorem 2.6. (i). For n � 2N we have

jcnj �
n�N�1X
k=N

���� bn�kan�k

���� jan�kjjakj+
nX

k=n�N

jbn�kjjakj

� sup
k�N

���� bkak
����

nX
k=0

jan�kjjakj+ sup
n�N�k�n

jakj �

1X
0

jbkj:



Asymptotic properties of convolution products of sequences 77

For n and k such that N � n�k, using (P1), it follows that jan�k=anj � mk. Using
(P2) it follows that supn�2N jcnj=janj < 1 and hence also that supn�N jcn=anj <
1. �

3.4.2. Proof of Theorem 2.6 (ii). For some �xed R and n � R � N we
have ����� cnan �

1X
k=0

bk

����� �
RX
k=0

jbkj

����an�kan
� 1

����+
nX

k=R+1

���� bkak
���� jan�kjjakjjanj

+

1X
k=R+1

jbkj

�

RX
k=0

jbkj

����an�kan
� 1

����+ sup
k�R

���� bkak
���� �M +

1X
k=R+1

jbkj:

For �xed R, using (P3) we have

0 � lim sup
n!1

����� cnan �
1X
k=0

bk

����� � sup
k�R

���� bkak
���� �M +

1X
k=R+1

jbkj:

Now let R!1 to obtain (ii). �

3.4.3. Proof of Theorem 2.6 (iii). Since b = �a+ d for some sequence d
such that limn!1 dn=an = 0 we have c = a � b = �a � a+ a � d. Using (P4) and x
3.4.2 we obtain

lim
n!1

cn
an

= 2�
1X
k=0

ak +
1X
k=0

dk =
1X
k=0

bk + �
1X
k=0

ak: �

3.4.4. Proof of Corollary 2.8. As in the proof of Corollary 2.5 we have

C(z)�

k�1X
m=0

Pm(z)Rm(1) +

k�1X
m=0

pm;mz
mRm+1(z) = Pk(z)Rk(z): (3.17)

Now, if supn�N jrk;n=pk;nj <1, by induction for m = 0; 1; 2; . . . ; k�1, using (P1),
we have

sup
n�N

����rm;n

pkn

���� � supn�N

����rm+1;n�1

pk;n

����+ sup
n�N

����rm+1;n

pk;n

���� <1:

which using Theorem 2.6 (i) proves (i).

If limn!1 rk;n=pk;n = �, by induction for m = 0; 1; 2; . . . ; k � 1 using (P3),
we have

lim
n!1

rm;n

pk;n
= lim

n!1

rm+1;n�1 � rm+1;n

pk;n
= 0: (3.18)

From (3.17), (3.18) and Theorem 2.6 it follows that

lim
n!1

 
cn �

k�1X
m=0

pm;nRm(1)

!
=pk;n = ��pk�1;k�1 + �

1X
m=0

pk;m +Rk(1):
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Since
P1

m=0 pk;m = pk�1;k�1 the proof of (ii) is complete. �
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