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ON NONLINEAR EQUATIONS OF EVOLUTION

IN BANACH SPACES

Stanislav Szu
a

Abstract. The paper contains an existence theorem and a Kneser-type theorem for the
problem x0 = A(t)x + f(t; x), x(0) = x0, where fA(t)gt2[0;d] is a family of linear operator gener-

ating an evolution operator U(t; s), and f is a continuous function satisfying a Kamke condition
with respect to the measure of noncompactness.

In this paper we shall give an existence theorem for mild solutions of the
Cauchy problem

x0 = A(t)x+ f(t; x); x(0) = x0; (1)

where fA(t)gt2[0;d] is a family of closed linear operators in a Banach space E and
f is a continuous function with values in E. Moreover, using the Browder-Gupta
connectedness principle [4], we shall show that the set of these solutions is a compact
RÆ, i.e. it is homeomorphic to the intersection of decreasing sequence of compact
absolute retracts. Let us remark that our existence proof di�ers strongly from those
in known papers concerning (1) (see e.g. [2], [3], [8{10], [14]).

Let Q = f(t; s): 0 � s � t � dg, B = fx 2 E: kx � x0k � bg, and let L(E)
denote the space of all bounded linear operators in E. We assume that fA(t)g
generates an evolution operator U :Q! L(E) with the following properties

(U1) the function (t; s)! U(t; s) is continuous on Q;

(U2) U(t; s)U(s; r) = U(t; r) and U(t; t) = I for all (t; s), (s; r) 2 Q;

(U3) there exists a continuous function p: [0; d]! R+ such that

kU(t; s)k � exp

tZ
s

p(r)dr for all (t; s) 2 Q:

Let us recall some de�nitions:
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A function u: [0; a]! E is called a mild solution of (1) if u is continuous and
satis�es

u(t) = U(t; 0)x0 +

tZ
0

U(t; s)f(s; u(s))ds (2)

for all t 2 [0; a] (cf. [2]).

A function h: (0; d] � R+ ! R+ is called a Kamke function if (i) h(t; �) is
continuous for almost every t 2 [0; d] and h(�; r) is measurable for every r 2 R+;

(ii) for every bounded subset Z of (0; d] � R+ there exists a function mZ

de�ned on (0; d] such that h(t; r) � mZ(t) for (t; r) 2 Z and mZ is integrable on
[c; d] for every small c > 0;

(iii) for each c, 0 < c � d, the identically zero function is the only absolutely
continuous function on [0; c] which satis�es u0(t) = h(t; u(t)) almost everywhere on
[0; c] and such that D+u(0) = u(0) = 0 (cf. [7]).

For any bounded subset X of E the Hausdor� measure of noncompactness of
X { denoted �(X) { is de�ned to be the in�mum of " > 0 such that X has a �nite
"-net in E. For properties of � see [15].

Moreover, denote by � the Lebesgue measure in R.

Our fundamental result is given by the following

Theorem 1. Assume that 1Æ f is a bounded continuous function from
[0; d] � B into E; 2Æ q is a function from (0; d] � R+ into R+ such that (t; r) !
p(t)r + q((t; r) is a Kamke function; 3Æ for any subset X of B and for any " > 0
there exists a closed subset J" of [0; d] such that �([0; d]nJ") < " and

�(f(T �X)) � sup
t2T

q(t; �(X))

for each closed subset T of J".

Then there exists at least one mild solution of (1) de�ned on a subinterval J
of [0; d].

Remark. It can be easily veri�ed that, in the case when q is nondecreasing in
r, the condition 3Æ holds whenever f = f1+f2, where f1 is a completely continuous
function and kf2(t; x)�f2(t; y)k � q(t; kx�yk) for all x, y 2 B and for a.e. t 2 [0; d].

Proof. Let us put k(t; s) = exp
tR
s

p(r)dr, K = supfk(t; s): (t; s) 2 Qg and

M = supfkf(t; x)k: 0 � t � d; x 2 Bg. We choose a number a such that 0 < a � d
and

kU(t; 0)x0 � x0k+M

tZ
0

k(t; s)ds � b for all t 2 [0; a]: (3)

Let J = [0; a]. Denote by C the Banach space of continuous function J ! E with

the usual supremum norm k � kc, and let ~B � C be the subset of those function
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with values in B. We introduce a mapping F de�ned by

F (x)(t) = U(t; 0)x0 +

tZ
0

U(t; s)f(s; x(s))ds (x 2 ~B; t 2 J):

In view of (U10) and (3), from the inequalities

kF (x)(t)� F (x)(�)k � kU(T; 0)x0 � U(�; 0)x0k+M

�Z
0

kU(t; s)� U(�; s)kds+

+KM(t� �)

kF (x)(t)� x0k �kU(t; 0)x0 � x0k+M

tZ
0

k(t; s)ds (x 2 ~B; 0 � � � t � a)

it follows that F ( ~B) is an equicontinuous subset of ~B. On the other hand, if xn,

x 2 ~B and lim kxn � xkc = 0, then by 1Æ, (U10) and the Lebesgue dominated
convergence theorem we get limn!1 F (xn)(t) = F (x)(t) for t 2 J . From this we

deduce that F is a continuous mapping ~B ! ~B.

For any positive integer n we de�ne a function un by

un(t) =

8<
:

x0 if 0 � t � an

U(t� an; 0)x0 +
t�anR
0

U(t� an; s)f(s; un(s))ds if an � t � a

where an = a=n. Then un 2 ~B and

un(t) = F (un)(rn(t)); (4)

where

rn(t) =

�
0 if 0 � t � an

t� an if an � t � a
:

Since the set F ( ~B) is equicontinuous, we have

lim
n!1

kun � F (un)kc = 0: (5)

Put V = fun:n = 1; 2; . . . g and W = F (V ). For simplicity we introduce the
following notation:

V (t) = fx(t):x 2 V g;

Z
T

U(t; s)f(s; V (s))ds =

8<
:
Z
T

U(t; s)f(s; x(s))ds:x 2 V

9=
; :

It is clear from (5) that the sets V , W are equicontinuous and

�c(V ) = �c(W ) and �(V (t)) = �(W (t)) for all t 2 J: (6)
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Hence, by Ambrosetti's lemma [1; Th. 2.3], the function t ! v(t) = �(V (t)) is
continuous on J .

Let us �x � , t, 0 < � < t � a. First we shall show that

�

0
@

tZ
�

U(t; s)f(s; V (s))ds

1
A �

tZ
�

k(t; s)q(s; v(s))ds: (7)

By the Scorza-Dragoni theorem, for a given " > 0 there exists a closed subset D" of
J such that �(JnD") < " and the function q is uniformly continuous on D" � [0; b]
Choose Æ > 0 in such a way that

jq(s1; r1)� q(s2; r2)j < " and jk(t; s1)� k(t; s2)j < "

for s1, s2 2 D", r1, r2 2 [0; b] satisfying js1 � s2j < Æ and jr1 � r2j < Æ, and choose
� such that 0 < � < Æ and jv(s1)� v(s2)j < Æ for s1, s2 2 J with js1 � s2j < �. We
divide the interval [�; t] into n parts

� = t0 < t1 < � � � < tn = t

in such a way that ti � ti�1 < � for i = 1; . . . ; n. Let Di = [ti�1; ti] \ D" and
Vi = fx(s):x 2 V; s 2 Dig. In virtue of Ambrosetti's lemma [1; Th. 2.2] we have

�(Vi) = supf�(V (s)): s 2 Dig = v(si); (8)

where si 2 Di. Moreover, by 3Æ, we may choose a closed subset J" of J such that
�(JnJ") < " and

�(f(T � Vi)) � sup
s2T

q(s; �(Vi)) (9)

for each closed T of J" and i = 1; . . . ; n. Let

P = [�; t] \D" \ J"; S = [�; t]nP and Ti = Di \ J":

Then
tZ

�

U(t; s)f(s; V (s))ds �

Z
P

U(t; s)f(s; V (s))ds +

Z
S

U(t; s)f(s; V (s))ds;

and therefore

�

0
@

tZ
�

U(t; s)f(s; V (s))ds

1
A

� �

0
@Z

P

U(t; s)f(s; V (s))ds

1
A+ �

0
@Z

S

U(t; s)f(s; V (s))ds

1
A : (10)

Further,Z
P

U(t; s)f(s; V (s))ds �
nX
i=1

Z
Ti

U(t; s)f(s; V (s))ds �
nX
i=1

�(Ti)convYi;
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where Yi = fU(t; s)f(s; y): s 2 Ti; y 2 Vig. Since the set fU(t; s): s 2 Tig is
compact, it is clear that

�(Yi) � sup
s2Ti

kU(t; s)k�(f(Ti � Vi)):

Thus, by (U3), (8) and (9), there exist �i, �i 2 Ti such that

�(Yi) � k(t; �i)q(�i; v(si)):

Consequently,

�

0
@Z

P

U(t; s)f(s; V (s))ds

1
A �

nX
i=1

�(Ti)k(t; �i)q(�i; v(si)): (11)

On the other hand, by 2Æ, there exists an integrable function m: [�; t] ! R+ (de-
pendent only on � , t) such that

q(s; r) � m(s) for � � s � t and 0 � r � b:

Therefore

�(Ti)k(t; �i)q(�i; v(si)) �

Z
Ti

k(t; s)q(s; v(s))ds + "

Z
Ti

m(s)ds+K"�(Ti);

and hence, owing to (11),

�

0
@Z

P

U(t; s)f(s; V (s))ds

1
A �

tZ
�

k(t; s)q(s; v(s))ds+ "

tZ
�

m(s)ds+K"(t� �) (12)

Furthermore, as kU(t; s)f(s; x(s))k � KM for all x 2 ~B and s 2 J , we have

�

0
@Z

S

U(t; s)f(s; V (s))ds

1
A � KM�(S): (13)

From (10), (12) and (13) it follows that

�

0
@

tZ
�

U(t; s)f(s; V (s))ds

1
A

�

tZ
�

k(t; s)q(s; v(s))ds + "

tZ
�

m(s)ds+K"(t� �) +KM�(S):

Since �(S) < 2" and the above inequality holds for every " > 0, we obtain
(7).
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Consider now the function w de�ned by

w(s) = supfkf(s; x)� f(s; y)k:x; y 2 B; kx� x0k � c(s); ky � x0k � c(s)g;

where c(s) = min(b; sup0�r�s kU(r; 0)x0�x0k+KMs). The function w is a modi-
�cation of the function introduced by Olech in [11]. We shall prove that w is lower
equicontinuous on (0; a) and continuous at 0. For given s 2 (0; a) and " > 0 there
are x, y 2 B such that

kx� x0k � c(s); ky � x0k � c(s) and w(s) � "=2 � kf(s; x)� f(s; y)k:

As f and c are continuous, there exists Æ < 0 such that

kf(r; u)� f(s; x)k � "=4 and kf(r; z)� f(s; y)k � "=4

for all r 2 J , u; z 2 B with jr � sj � Æ, ku � xk � Æ and kz � yk � Æ, and there
exists � > 0 such that jc(r)�c(s)j � Æ for all r 2 J with jr�sj � �. Hence, putting

ur =
c(r)

c(s)
(x� x0) + x0 and zr =

c(r)

c(s)
(y � x0) + x0;

we have kur � x0k � c(r), kzr � x0k � c(r), kur � xk � Æ, kzr � yk � Æ

w(s) � "=2 � kf(s; x)� f(s; y)k � kf(s; x)� f(r; ur)k

+ kf(r; ur)� f(r; zr)k+ kf(r; zr)� f(s; y)k � w(r) + "=2;

so that w(s) � w(r) + " for r 2 J with jr � sj � �. This proves that w is lower
semicontinuous at s. The continuity of w at 0 is an immediate consequence of the
fact that f and c are continuous and w(0) = c(0) = 0.

From (4) and the de�nitions of c and w it follows that

kun(s)� x0k � c(s) for s 2 J and n = 1; 2; . . . ;

and 






tZ

�

U(t; s)f(s; um(s))ds�

tZ
�

U(t; s)f(s; un(s))ds







 � K

tZ
�

w(s)ds

for m;n = 1; 2; . . . . Hence

�

0
@

tZ
�

U(t; s)f(s; V (s))ds

1
A � K

tZ
�

w(s)ds: (14)

Since for any x 2 ~B

F (x)(t) = U(t; �)F (x)(�) +

tZ
�

U(t; s)f(s; x(s))ds;
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we have

�(F (V )(t)) � kU(t; �)k�(F (V )(�)) + �

0
@

tZ
�

U(t; s)f(s; V (s))ds

1
A :

Consequently, by (6) and (U3),

v(t) � exp

0
@

tZ
�

p(s)ds

1
A v(�) + �

0
@

tZ
�

U(t; s)f(s; V (s))ds

1
A :

In view of (7) and (14), this implies that

v(t)� v(�) �

0
@exp

tZ
0

p(s)ds� exp

�Z
0

p(s)ds

1
A exp

0
@�

�Z
0

p(s)ds

1
A v(�)+

min

0
@K

tZ
�

w(s)ds; exp

0
@

tZ
0

p(s)ds

1
A

tZ
�

exp

0
@�

�Z
0

p(r)dr

1
A q(s; v(s))ds

1
A

(15)

for 0 < � < t � a.

In particular, from (15) it follows that

v(t)� v(�) � N

0
@exp

tZ
0

p(s)ds� exp

�Z
0

p(s)ds

1
A+K

tZ
�

w(s)ds for 0 � � � t � a;

where

N = max
r2J

v(r) exp

0
@�

rZ
0

p(s)ds

1
A ;

which proves that the function v is absolutely continuous on J . This fact, plus (15)
implies the inequality

v0(�) � p(�)v(�) + min(Kw(�); q(�; v(�))) for almost every � 2 J: (16)

Obviously v(0) = �(W (0)) = �(fx0g) = 0.

By 2Æ and Lemma 1 from [11], the function z = 0 is the only absolutely
continuous function satisfying almost everywhere the equation

z0 = p(t)z +min(Kw(t); q(t; z))

and the initial condition z(0) = 0. Hence, applying the theorem on di�erential
inequalities (cf. [5], [12]), from (16) we deduce that v(t) = 0 for all t 2 J . Therefore,
by (5) and Ambrosetti's lemma [1; Th. 2.3] we obtain

�c(V ) = �c(W ) = sup
t2J

v(t) = 0;
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i.e. V is relatively compact in C. Consequently, we can �nd a subsequence (unj )
of (un) which converges in C to a limit u. In view of (5), this implies that ku �
F (u)kc = limj!1 kunj � F (unj )kc = 0. Thus u = F (u), i.e. u is a solution of (2).

The next result is a Kneser type theorem for (1).

Theorem 2. Suppose that the assumptions 1Æ { 3Æ are ful�lled and in
addition the function q is nondecreasing in r. Then the set of all mild solutions of
(1) on J is a compact RÆ.

Proof. Let us put

�(x) =

�
x; for x 2 B

x0 + b(x� x0)=kx� x0k; for x 2 EnB

and
g(t; x) = f(t; �(x)) for (t; x) 2 J �E:

Then g is a continuous function from J � E into E and kg(t; x)k < M for (t; x) 2
J �E. Moreover, as

�(X) � x0 + [0���1�X;

we have �(�(X)) � �(X) for any bounded subset X of E. Since the function
r ! q(t; r) is nondecreasing, from this we deduce that the function g satis�es 3Æ.

Consider the mapping G de�ned by

G(x)(t) = U(t; 0)x0 +

tZ
0

U(t; s)g(s; x(s))ds (x 2 C; t 2 J):

Similarly as for F in the proof of Theorem 1, it can be shown that G is a continuous
mapping C ! ~B and the image G(C) is equicontinuous. Further, for any positive
integer n, we de�ne a mapping Gn by

Gn(x)(t) = G(x)(rn(t)) (x 2 C; t 2 J);

where

rn(t) =

�
0 if 0 � t � a=n

t� a=n if a=n � t � a.

It can be easily veri�ed (see e.g. [19]) that

(i) Gn is continuous:

(ii) limn!1Gn(x) = G(x) uniformly in x 2 C;

(iii) I �Gn in a homeomorphism C ! C.

Now we shall show that I �G is a proper mapping, that is

(I �G)�1(Y ) is compact for any compact subset Y of C. (17)

Let Y be a given compact subset of C, and let (un) be an in�nite sequence in
(I � G)�1(Y ). Since un � G(un) 2 Y for n = 1; 2; . . . , we can �nd a subsequence
(unj ) of (un) and y 2 Y such that

lim
j!1

kunj �G(unj )� ykc = 0:
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Putting V = funj : j = 1; 2; . . .g and repeating the argument (with slight modi�ca-
tions) from the proof of Theorem 1, we infer that the set V is relatively compact
in C. This proves (17).

Applying now Theorem 7 from [4], we conclude that the set (I �G)�1(0) is
compact RÆ . As kG(x)(t)k � b for all x 2 C and t 2 J , (I � G)�1(0) is equal to
the set of all mild solutions of (1) on J .
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