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THE LENGTH OF A LEMNISCATE

M. Elia and M.T. Galizia Angeli

Abstract. A class of two parametric real algebraic curves, is de�ned which contains in
particular the historical lemniscata of Bernoulli. The length of such curves as a function of the
parameters is studied with emphasis on its asymptotic behaviors.

1. Introduction. A. lemnicate of order n is a real algebraic curve of equation

jzn � 1j = t t > 0 (1)

where n is a positive integer, z = x + iy is a complex number and jzj denotes the
modulo of z. The name of these curves could originate from the lemniscates are
closed curves of �nite length, their shape depends on whether t < 1, t = 1 or t > 1

Fig. 1
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for every n > 1. Fig. 1 shows these three aspects in the case n = 2, and respectively
t = 1=2, t = 1, t = 1 � 1 and t = 2. The limiting case n = 1 need not be discussed
since equation (1) represents a circumference of radius t.

Let Ln(t) denote the length of a lemniscate of order n. A closed integral form
of Ln(t) is known, although several related problems remain still unsolved [1]. In
this paper the function Ln(t) is studied and its asymptotic behaviors, with respect
to the parameters n and t are exploited. The expression of L2(t) i terms of elliptic
integrals, which does not seem to be quoted anywhere, is also derived.

For later use it is convenient to rewrite equation (1) using polar coordinates;
by setting z = �ei�, explicitly solving for �, and distinguishing among values of t
lower, equal or greater than 1, we have

i) 0 < t < 1

� =
n

q
cosn� �

p
t2 � sin2 n�; 2�k � arc sin t � n� � arc sin t+ 2k�;

0 � k � n� 1 (3)

ii) t = 1

� =
n

p
2 cosn�; 4k� � � � 2n� � � + 4k�; 0 � k � n� 1 (4)

iii) t < 1

� =
n

q
cosn� +

p
t2 � sin2 n� 0 � � � 2� (5)

2. Explicit formulas. The length of a lemniscate is given by a de�nite
integral which can be easily obtained from the polar representation. The derivation
of the expression is made even simpler since �(�) is a periodic function of � of period
2�=n. In fact the integrals can be evaluated on a period and then multiplied by n.

Ln(t) = n

��=nZ
��=n

p
�2 + �2d� (6)

De�ning

In(x) =

�Z
0

n

qp
x+ cos2 '+ cos'p

x+ cos2 '
d' (7)

and using equations (3), (4) and (5), equation (6) yields

Ln(t) =

8><
>:

2tIn(t
2 � 1); t > 1

2In(0); t = 1

2 n

p
tIn(1=t

2 � 1); 0 < t < 1

(8)

From this representation it can be seen that Ln(t) is a continuous function of t. In
particular, we have I1(x) = �, independent from x, so that L1(t) = 2t� gives the
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expected circumference length. Also I2(x) can be expressed by means of special
elementary functions, i.e. complete elliptic integral of the �rst kind K( ). In order

to see this we make the substitution cos' =
p
x
p
1=v2 � 1, into equation (7) to

obtain

I2(x) =
4
p
4xp

1 + x

1Z
p

x=(1+x)

dvp
v(1� v)(v2 � x=(1 + x))

(9)

and applying the classical bilinear transformations of elliptic integrals [2, pp. 82{86]
we get

I2(x) =
4
p
2

4
p
1 + x

1
p
2 +

q
1 +

p
x=(1 + x)

K

0
BBB@ 1�

p
x=(1 + x)�p

2 +
q
1 +

p
x=(1 + x)

�2
1
CCCA : (10)

Hence the length of the lemniscate of order two results in

L2(t) =

8>>>>>><
>>>>>>:

8
p
2t

p
2+
q
1+
p
1�1=t2

K

 
1�
p
1�1=t2

[
p
2+
q
1+
p
1�1=t2]2

!
t > 1

8
p
2=(1 +

p
2)K(1=(3 + 2

p
2)) t = 1

8
p
2tp

2+
p
1+
p
1�t2

K

�
1�
p
1�t2

[
p
2+
p
1+
p
1�t2]2

�
0 � t < 1.

(11)

In general, it seems that the integral In(x) and in turn Ln(t) cannot be expressed
in terms of either elementary or special functions. Hereafter Ln(t) will be studied
with reference to its integral representation. Anyway, the particular integral In(0)
is computable in terms of gamma functions (see [3]).

In(0) =

xZ
0

p
j cos'j+ cos'

j cos'j d' =

�Z
0

(cos')�1+1=nd' =
��(1=n)

�2(1=2 + 1=2n)
: (12)

Furthermore, by means of the relation �(z)�(1�z) = � sin(z�), another expression,
useful for exploiting the asymptotic behavior of Ln(1) as n!1, is obtained

Ln(1) =
2�2

sin(�=n)�(1� 1=n)�2(1=2 + 1=2n)
: (13)

3. Asymptotic results. In this section the asymptotic expressions con-
cerning the function Ln(t) will be obtained, both for �xed t letting n ! 1, and
for �xed n letting either t ! 1 or t ! 0. Let us �rst consider t < 1. In this case
Ln(t) explicitly results in the following

Ln(t) = 2t

�Z
0

n

qp
1� t2 sin2 '+ t cos'p

1� t2 sin2 '
d' (14)
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Therefore, �xing t, as n!1 the integral uniformly tends to 2K(t2), so that

Ln(t)! 4tK(t2) (15)

while as t! 0, the integral can be evaluated by means of a series expansion to give

Ln(t)! 2�t+ �2(1� 1=n)2t3=4 (16)

The case t = 1 and n!1 is simply disposed of: using equation (13) we obtain

Ln(1)! 2n (17)

Now let us consider t > 1, here again Ln(t) explicitly results in the following

Ln(t) = 2
n

p
t

�Z
0

n

rq
1� (sin2 ')=t2 + cos'=tq

1� (sin2 ')=t2
d' (18)

Therefore for t �xed, as n!1 the integral uniformly tends to 2K(1=t2), so that

Ln(t)! 4K(1=t2) (19)

while as t!1 the integral tends to � so that

Ln(t)! 2�
n

p
t (20)

The equations (15), (17) and (19) show the singular behavior of the function Ln(t)
in the point t = 1. Such a function for t = 1 diverges with n, while for t 6= 1
the function values, at the limit as n !1, are constant and independent from n.
In order to see what kind of singularity the point t = 1 is, and for exhibiting the
qualitative shape of Ln(t), it is useful to compute the derivative

dLn(t)=dt =

�
2In(t

2 � 1 + 4t2In(t
2 � 1) t > 1

2t�1+1=nIn(1=t2 � 1)=n� 4t�3+1=nIn(1=t2 � 1) 0 < t < 1
(21)

where In(x) means dIn(x)=dx.

It can be seen that for 0 < t < 1dLn(t)=dt > 0, while on the other hand, for
t > 1, the derivative presents at least one change of sign. Moreover we have

lim
t!�1

dL(t)=dt = +1 lim
t!+1

dLn(t)=dt = �1

showing that in t = 1 the curve representing Ln(t) has a cusp.

4. Conclusions. The qualitative shape of Ln(t), n � 2, is shown in Fig. 2
whose drawing relies on the following facts

1. Ln(0) = 0

2. Ln(t) tends to in�nity with t;

3. Ln(t) has at least one minimum in the range t > 1;
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4. Ln(t) is monotone increasing in the range 0 < t < 1;

5. (1; Ln(1)) is a cuspidal point with vertical tangent.

The function Ln(t) has been almost completely characterized, but certain
problems are still unsolved. It seems likely that Ln(t) presents only one minimum,
but this fact is to be proved; moreover, if this conjecture is true, a second problem
can be raised concerning the asymptotic behavior of this minimum for n tending
to in�nity.

Fig. 2

Finally, a third open problem is to show whether or not In(x), for n greater
than 2 is expressible in terms of classical special functions.
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