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A NIL-EXTENSION OF A COMPLETELY SIMPLE SEMIGROUP

Stojan Bogdanovié and Svetozar Milié

Abstract. We describe semigroups which are nil-extensions of completely simple semi-
groups and in particular nil-extension of left groups or rectangular bands.

In this paper we consider power regular semigroups in which indempotents are
primitive. These semigroups are nil-extensions of a completely simple semigroups
(Theorem 1).

Power regular semigroups are considered in [1]. A semigroup S is power
regqular if for every a € S there exists m € N such that ™ € a™Sa™. A semigroup
S is power completely regular if for every a € S there exist z € S and m € N such
that a™ = a™xa™, a™x = xa™.

If e, f are idempotents of a semigroup S, we shall writee < fifef = fe=e.
An idempotent is called primitive if it is nonzero and is minimal in the set of non-
zero idempotents relative to the partial order <. By nil-extension we mean an ideal
extension by a nil-semigroup. A semigroup S with zero 0 is a nil-semigroup if for
every a € S there exists n € N such that ¢ = 0. By E denote the set of all
idempotents of a semigroup.

For undefined notions and notations we refer to [2], [4] and [7].

LemMA 1. If S is power regular semigroup all of whose idempotents are
primitive, then S is power completely regular with mazimal subgroups given by
G.=eSe (ec E).

Proof. For a € S there exist z € S and m € N such that a™ = a™za™. For
af € S, where k > m, there exist y € S and n € N such that a*? = a*?ya*".
Assume that e = a™z and f = a*?ya™z. Then

f2 — aknyammaknyamaj — akny(amwam)akn—myamaj — aknyamakn—myamm
— aknyaknyamx — aknyamx — f
ef = a™xa"ya™r = a™xa™ """ ya™x = aFyamx = f

fe = a*""ya™zamz = a""ya"x = f.
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Hence, ef = fe = f. so e = f. From this it follows that
a™ = a™zra™ = eq™ = f(lm — aknyammam € aerlSam

i.e. S is power completely regular [1, Proposition 3.2].

Let e € E and u € G, then u = eue € eSe and thus G, C eSe. Conversely,
let u € eSe, i.e. u ebe for some b € S. Then u? € Gy for some p € N and f € F, so

ef = euP(uP)™' = e(ebe)?(uP)™' = f

and dually fe = f. Hence, e = f. Therefore, u? € G,. From this and Lemma, 1 of
[6] we have that uP*! € G, so

e=uPT (W) = u-wP (@) T = wP (WP T
and since eu = e(ebe) = ebe = u = ue we have that u € G, and therefore eSe C G.,.

LEMMA 2. The unity e of a minimal bi-ideal B of S is a primitive idempotent
in S.

Proof. For an arbitrary idempotent f € S, if f =ef = fe, then f = efe €
eSe C B, so e = f (since B is a subgroup of S [5, Lemma 2.6]).

LEMMA 3. Let K be the union of all minimal bi-ideals of S. Then k is a
completely simple kernel of S.

Proof. By Lemma 2.5 [5] K is an ideal of S. By Lemma 2 we have that every
idempotent from K is primitive and since K is a union of groups we have that K
is completely simple [4, Corollary III 3.6.]

The following theorem is a generalization of a result of Munn [6, Theorem 2].

THEOREM 1. The following conditions are equivalent on a semigroup S:

(i) S is power reqular and all idempotents of S are primitive;

(ii) S is a nil-extension of a completely simple semigroup;

(iii) (Va,b€ S) (Im € N) (a™ € a™bSa™).

Proof. (i) = (ii). By Lemma 1 we have that S is power completely regular
and maximal subgroups of S are of the form G, = eSe (e € E). Since G¢(e € E)
is a minimal bi-ideal [5, Lemma 2.6], then by Lemma 3 we have that S has a
completely simple kernel K. It is clear that for every a € S there exists m € N
such that a™ € K.

(ii) = (i). This implication follows immediately.

(ii) = (iii). If S is nil-extension of a completely simple semigroup, then for
a,b€e S, a™, amba™ € G, for some m € N (Lemma 1), so a™ = a™ba™z for some
x € G.. From this it follows that a™ = a™ba™z(a™) ta™ € a™bSa™.

(iii) = (ii). For a = b we have that a™ € a™*1Sa™, so by [1, Proposition
3.2] S is power completely regular. Let S have a proper ideal I. For e € E and
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b € I we have e € ebSe C 1. Hence, the intersection of all ideals of S is nonempty,
i.e. S has a minimal ideal K. Since K is power completely regular we have that
K is completely simple (Theorem 2. [6]). For a € S and b € K we have that
a™ € a™bSa™ C K for some m € N.

THEOREM 2. The following conditions on a semigroup S are equivalent:

(i) S is a nil-extension of a left group;

(ii) S is power regular and E is a left zero band;

(iii) (Va,b€ S) (Im € N) (a™ € a™Sa™b).

Proof. (i) = (ii). This implication follows immediately.

(ii) = (iii). By Theorem 1 we have that S contains a completely simple kernel
K which is, in fact, a left group. For a,b € S there exist m,n € N such that a™,
" € K, so a™ = b, b® = ya™ for some z,y € K. Since a™ € G, for some
e € E we have a™ = a™(a™) 1zb"b = a™(a™) tzya™b € a™Sa™b.

(iii) = (i). If the condition (iii) holds, then for a € S we have that a™ €
a™Sa™a = a™Sa™*! for some m € N and therefore by Proposition 3.2. [1] S is
power completely regular. For e, f € E we have that f = fxfe for some z € S, so
fe=(fzfe)e= f,ie. Eis a left zero band. Hence, K U.cg G, is a left group (see
2, Ex. e. § 1.11.]

COROLLARY 1. S is a left group iff (Va,b € S) (a € aSab).

THEOREM 3. Let S be a semigroup. If

(Va € S)(F1z € S)(3m € N)(a™ = za™?) (1)
then S is a nil-extension of a left group.
Proof. Let (1) be satisfied in a semigroup S. Then a™ = za™*! = z2aa™*!.
From this and from (1) it follows that
r = r’a. (2)

Furthermore, for z there exist y € S and n € N such that 2" = y2"t! and
Y’ =y, (3)
From (2) and (3) it follows that

y? = yy’z = y*2’a = y*za’a® = y’r’a® = y’ra = ya = yz"a™ .

For k = max(m,n) we have

2 m k+1ak+2 — xn+lmk7nak+2 — nakfnak+2 — mkak+2 — 3

YT =yx +— yr Y €T zra-,
so y =y’ = za’z. Further,
ym+2 — ymy2 — ymya — ym71y20,
=y" tya® = ... = ya""! = zaPra™" = zata™ = a™*?
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From this it follows that y™*2z™*! = @m*2p™m+l and by (3) we have y =
a™ 2™+l Hence
a™ = xam+1 — mnam—i-n — yxn—i-lam—i-n — am+2xm+1mn+lam+n

so a™ € a™t1Sa™, i.e. S is power completely regular.
Let e,f € E. Then (ef)™ = z(ef)™ ! = xe(ef)™"! for some z € S and
m € N. By uniqueness we have that 2 = 2%ef and = = xe. From this it follows
that x = ze = z f, so x = (ef)™. Furthermore, (ef)™ = (ef)™ = e = (efe)™ and
(ef)™ = (efe)™f = (ef)™ ' = (ef)(ef)" " =e(ef)™ .
Therefore, ef = e. So by Theorem 2 S is a nil-extension of a left group.

DEFINITION 1. S is a power group if S is a power regular with exactly one
idempotent.

THEOREM 4. The following conditions are equivalent on a semigroup S:
(i) S is a power group;

(ii) S is a nil-extension of a group;

(iii) (Va,b€ S) (Im € N) (a™ € ba™Sa™b)

Proof. (i) = (ii) This implication follows immediately.

(ii) = (iii) Let S be nil-extension of a group G. For a,b € S we have that
a™,a™b,ba™sa™b € G for some m € N and for each s € S, and then a™ =
ba™sa™bx for some z € G, i.e. a™ = ba™sa™bx(a™b)"a™b € ba™Sa™b.

(iii) = (i) It is clear that S is power regular. We shall prove that S has only
one idempotent. If e and f are idempotents from S, then e = zf, f = ey for some
z,y€ S,soef =zff=xf =e,ef =eey =ey = f thuse = f.

COROLLARY 2. The following conditions are equivalent on a semigroup S':
(i) S is a regular semigroup with only one idempotent;

(ii) S is a group;

(ili) (Va,b € S) (a € baSabd).

REMARK. (i) = (ii) is Corollary IV.3.6. of [4].

LEMMA 4. Let S be a semigroup. If
(Va € S)(F1z € S)(Im € N)(a™ = aza™) (4)
then S is a power group.

Proof. Assume that (4) holds. Then for e, f € E we have
(ef)™ = (ef)"glef)™ (5)

for some g € S and m € N and by uniqueness we have that

g=glef)™g (6)
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It follows from (ef)™ fg(ef)™ = (ef)™ that

fa=g (7)
Similarly,
ge =9 (8)
If m = 1, then by (6), (7) and (8) we have that g = g2.

If m > 1, then by (6), (7) and (8) we obtain g = g(ef)™g = g(fe)™ 'g and
by uniqueness we have that

(ef)™ = (feym 9)
It follows from (5) and (9) that (fe)™ ! = (fe)™ tg(fe)™ ! = (fe)™ teg(fe)™ 1,
S0
eg=g. (10)
Similarly,
9f = (11)

By (7), (8), (9) and (10) we have that g = g( f)™g = g*. Since g is an idempotent,
then by uniqueness from (6) we obtain g = (ef)™. Hence,
)™

(ef)*™ = (ef)™e(ef)™ = (ef)™ = (/)" flef)™
and therefore e = f. Thus S is a power group.

REMARK. The converse of Lemma 4 is not true. For example, the semigroup
S given by table 1

is a power group. But, for ¢ we have that ¢> = a € G = {a, b} and there exist * = a

and x = ¢ such that ¢ = 2ac?.

It is easy to see that in the semigroup given by table 2 the condition (1) from
Lemma 4 is satisfied.

THEOREM 5. The condition (4) from Lemma 4 holds iff there is only one
idempotent e in S and for every a € S there exists m € N such that a™ = a™za™,
re = x.

Proof. If (4) holds, then by Lemma 4 S contains only one idempotent e. By
uniqueness we have that x = xa™z and a™z = e implies xe = x
Conversely, assume that for a € S there exist z,y € S and m € N such that

a™ =amza™ = a"ya™. (12)

By uniqueness of the idempotent we have that a™x = za™. Hence, a™ is in a
subgroup G, of S. By Lemma 1 [6] we have that ze = ex, ye = ey and ze, ye € G..
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So by (12) we have that a™exa™ = a™eya™ and thus ex = ey by cancellation in
Ge. Hence, x = y.

COROLLARY 3. [3] S is a group iff (Va € S) (F1z € S) (a = aza).
THEOREM 6. S is a nil-extension of a rectangular band iff

(Va,b € S)(Im € N)(a™ =a™ba™).

Proof. Let S be a nil-extension of a rectangular band E. Then for a,b € S

there exists m € N such that a™ = e € F and by Lemma 1 we have that a™ba™ = e.
Thus a™ = a™ba™.

Conversely, it is clear that E # (). For e, f € E we have e = efe and f = fef

and if ef = fe, then e = ef = f. Thus E is a rectangular band. For e € E and
x € S we have that e = exe, so ex,ze € E, i.e. E is an ideal of S and clearly for
every a € S there exists m € N such that ™ € E. Therefore, S is a nil-extension
of a rectangular band.

[6]
(7]

COROLLARY 4. [4] S is a rectangular band iff (Va,b € S) (a = aba).
COROLLARY 5. S is a nil-extension of a left zero band iff

(Va,b € S)(Im € N)(a™ = a™b).

COROLLARY 6. S is a nil-semigroup iff (Va,b € S) (3m € N) (a™ba™ =
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