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A NIL-EXTENSION OF A COMPLETELY SIMPLE SEMIGROUP

Stojan Bogdanovi�c and Svetozar Mili�c

Abstract. We describe semigroups which are nil-extensions of completely simple semi-
groups and in particular nil-extension of left groups or rectangular bands.

In this paper we consider power regular semigroups in which indempotents are
primitive. These semigroups are nil-extensions of a completely simple semigroups
(Theorem 1).

Power regular semigroups are considered in [1]. A semigroup S is power

regular if for every a 2 S there exists m 2 N such that am 2 amSam. A semigroup
S is power completely regular if for every a 2 S there exist x 2 S and m 2 N such
that am = amxam, amx = xam.

If e, f are idempotents of a semigroup S, we shall write e � f if ef = fe = e.
An idempotent is called primitive if it is nonzero and is minimal in the set of non-
zero idempotents relative to the partial order �. By nil-extension we mean an ideal
extension by a nil-semigroup. A semigroup S with zero 0 is a nil-semigroup if for
every a 2 S there exists n 2 N such that an = 0. By E denote the set of all
idempotents of a semigroup.

For unde�ned notions and notations we refer to [2], [4] and [7].

Lemma 1. If S is power regular semigroup all of whose idempotents are

primitive, then S is power completely regular with maximal subgroups given by

Ge = eSe (e 2 E).

Proof. For a 2 S there exist x 2 S and m 2 N such that am = amxam. For
ak 2 S, where k > m, there exist y 2 S and n 2 N such that akn = aknyakn.
Assume that e = amx and f = aknyamx. Then

f2 = aknyamxaknyamx = akny(amxam)akn�myamx = aknyamakn�myamx

= aknyaknyamx = aknyamx = f

ef = amxaknyamx = amxamakn�myamx = aknyamx = f

fe = aknyamxamx = aknyamx = f:
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Hence, ef = fe = f . so e = f . From this it follows that

am = amxam = eam = fam = aknyamxam 2 am+1Sam

i.e. S is power completely regular [1, Proposition 3.2].

Let e 2 E and u 2 Ge, then u = eue 2 eSe and thus Ge � eSe. Conversely,
let u 2 eSe, i.e. u ebe for some b 2 S. Then up 2 Gf for some p 2 N and f 2 E, so

ef = eup(up)�1 = e(ebe)p(up)�1 = f

and dually fe = f . Hence, e = f . Therefore, up 2 Ge. From this and Lemma 1 of
[6] we have that up+1 2 Ge, so

e = up+1(up+1)�1 = u � up(up+1)�1 = up(up+1)�1 � u

and since eu = e(ebe) = ebe = u = ue we have that u 2 Ge and therefore eSe � Ge.

Lemma 2. The unity e of a minimal bi-ideal B of S is a primitive idempotent

in S.

Proof. For an arbitrary idempotent f 2 S, if f = ef = fe, then f = efe 2
eSe � B, so e = f (since B is a subgroup of S [5, Lemma 2.6]).

Lemma 3. Let K be the union of all minimal bi-ideals of S. Then k is a

completely simple kernel of S.

Proof. By Lemma 2.5 [5] K is an ideal of S. By Lemma 2 we have that every
idempotent from K is primitive and since K is a union of groups we have that K
is completely simple [4, Corollary III 3.6.]

The following theorem is a generalization of a result of Munn [6, Theorem 2].

Theorem 1. The following conditions are equivalent on a semigroup S:

(i) S is power regular and all idempotents of S are primitive;

(ii) S is a nil-extension of a completely simple semigroup;

(iii) (8a; b 2 S) (9m 2 N) (am 2 ambSam).

Proof. (i) ) (ii). By Lemma 1 we have that S is power completely regular
and maximal subgroups of S are of the form Ge = eSe (e 2 E). Since Ge(e 2 E)
is a minimal bi-ideal [5, Lemma 2.6], then by Lemma 3 we have that S has a
completely simple kernel K. It is clear that for every a 2 S there exists m 2 N

such that am 2 K.

(ii) ) (i). This implication follows immediately.

(ii) ) (iii). If S is nil-extension of a completely simple semigroup, then for
a; b 2 S, am, ambam 2 Ge for some m 2 N (Lemma 1), so am = ambamx for some
x 2 Ge. From this it follows that am = ambamx(am)�1am 2 ambSam.

(iii) ) (ii). For a = b we have that am 2 am+1Sam, so by [1, Proposition
3.2] S is power completely regular. Let S have a proper ideal I . For e 2 E and



A nil-extension of a completely simple semigroup 47

b 2 I we have e 2 ebSe � 1. Hence, the intersection of all ideals of S is nonempty,
i.e. S has a minimal ideal K. Since K is power completely regular we have that
K is completely simple (Theorem 2. [6]). For a 2 S and b 2 K we have that
am 2 ambSam � K for some m 2 N .

Theorem 2. The following conditions on a semigroup S are equivalent:

(i) S is a nil-extension of a left group;

(ii) S is power regular and E is a left zero band;

(iii) (8a; b 2 S) (9m 2 N) (am 2 amSamb).

Proof. (i) ) (ii). This implication follows immediately.

(ii)) (iii). By Theorem 1 we have that S contains a completely simple kernel
K which is, in fact, a left group. For a; b 2 S there exist m;n 2 N such that am,
bn 2 K, so am = xbn+1, bn = yam for some x; y 2 K. Since am 2 Ge for some
e 2 E we have am = am(am)�1xbnb = am(am)�1xyamb 2 amSamb.

(iii) ) (i). If the condition (iii) holds, then for a 2 S we have that am 2
amSama = amSam+1 for some m 2 N and therefore by Proposition 3.2. [1] S is
power completely regular. For e; f 2 E we have that f = fxfe for some x 2 S, so
fe = (fxfe)e = f , i.e. E is a left zero band. Hence, K [e2E Ge is a left group (see
[2, Ex. e. x 1.11.]

Corollary 1. S is a left group i� (8a; b 2 S) (a 2 aSab).

Theorem 3. Let S be a semigroup. If

(8a 2 S)(91x 2 S)(9m 2 N)(am = xam+1) (1)

then S is a nil-extension of a left group.

Proof. Let (1) be satis�ed in a semigroup S. Then am = xam+1 = x2aam+1.
From this and from (1) it follows that

x = x2a: (2)

Furthermore, for x there exist y 2 S and n 2 N such that xn = yxn+1 and

y2 = yx: (3)

From (2) and (3) it follows that

y2 = yy2x = y3x2a = y3xx2a2 = y2x2a2 = y2xa = ya = yxmam+1:

For k = max(m;n) we have

y2 = yxm+1 = yxk+1ak+2 = yxn+1xk�nak+2 = xnak�nak+2 = xkak+2 = xa3;

so y = y2x = xa3x. Further,

ym+2 = ymy2 = ymya = ym�1y2a

= ym�1ya2 = . . . = yam+1 = xa3xam+1 = xa3am = am+2:
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From this it follows that ym+2xm+1 = am+2xm+1 and by (3) we have y =
am+2xm+1. Hence

am = xam+1 = xnam+n = yxn+1am+n = am+2xm+1xn+1am+n

so am 2 am+1Sam, i.e. S is power completely regular.

Let e; f 2 E. Then (ef)m = x(ef)m+1 = xe(ef)m+1 for some x 2 S and
m 2 N . By uniqueness we have that x = x2ef and x = xe. From this it follows
that x = xe = xf , so x = (ef)m. Furthermore, (ef)m = (ef)m = e = (efe)m and

(ef)m = (efe)mf = (ef)m+1 = (ef)(ef)m+1 = e(ef)m+1:

Therefore, ef = e. So by Theorem 2 S is a nil-extension of a left group.

Definition 1. S is a power group if S is a power regular with exactly one
idempotent.

Theorem 4. The following conditions are equivalent on a semigroup S:

(i) S is a power group;

(ii) S is a nil-extension of a group;

(iii) (8a; b 2 S) (9m 2 N) (am 2 bamSamb)

Proof. (i) ) (ii) This implication follows immediately.

(ii) ) (iii) Let S be nil-extension of a group G. For a; b 2 S we have that
am; amb; bamsamb 2 G for some m 2 N and for each s 2 S, and then am =
bamsambx for some x 2 G, i.e. am = bamsambx(amb)�1amb 2 bamSamb.

(iii) ) (i) It is clear that S is power regular. We shall prove that S has only
one idempotent. If e and f are idempotents from S, then e = xf , f = ey for some
x; y 2 S, so ef = xff = xf = e, ef = eey = ey = f thus e = f .

Corollary 2. The following conditions are equivalent on a semigroup S:

(i) S is a regular semigroup with only one idempotent;

(ii) S is a group;

(iii) (8a; b 2 S) (a 2 baSab).

Remark. (i) ) (ii) is Corollary IV.3.6. of [4].

Lemma 4. Let S be a semigroup. If

(8a 2 S)(91x 2 S)(9m 2 N)(am = amxam) (4)

then S is a power group.

Proof. Assume that (4) holds. Then for e; f 2 E we have

(ef)m = (ef)mg(ef)m (5)

for some g 2 S and m 2 N and by uniqueness we have that

g = g(ef)mg (6)
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It follows from (ef)mfg(ef)m = (ef)m that

fg = g (7)

Similarly,
ge = g: (8)

If m = 1, then by (6), (7) and (8) we have that g = g2.

If m > 1, then by (6), (7) and (8) we obtain g = g(ef)mg = g(fe)m�1g and
by uniqueness we have that

(ef)m = (fe)m�1 (9)

It follows from (5) and (9) that (fe)m�1 = (fe)m�1g(fe)m�1 = (fe)m�1eg(fe)m�1,
so

eg = g: (10)

Similarly,
gf = g: (11)

By (7), (8), (9) and (10) we have that g = g(ef)mg = g2. Since g is an idempotent,
then by uniqueness from (6) we obtain g = (ef)m. Hence,

(ef)2m = (ef)me(ef)m = (ef)m = (ef)mf(ef)m

and therefore e = f . Thus S is a power group.

Remark. The converse of Lemma 4 is not true. For example, the semigroup
S given by table 1

1 a b c

a a b a

b b a b

c a b a

2 a b c

a a b b

b b a a

c b a a

is a power group. But, for c we have that c2 = a 2 G = fa; bg and there exist x = a

and x = c such that c2 = c2xc2.

It is easy to see that in the semigroup given by table 2 the condition (1) from
Lemma 4 is satis�ed.

Theorem 5. The condition (4) from Lemma 4 holds i� there is only one

idempotent e in S and for every a 2 S there exists m 2 N such that am = amxam,

xe = x.

Proof. If (4) holds, then by Lemma 4 S contains only one idempotent e. By
uniqueness we have that x = xamx and amx = e implies xe = x

Conversely, assume that for a 2 S there exist x; y 2 S and m 2 N such that

am = amxam = amyam: (12)

By uniqueness of the idempotent we have that amx = xam. Hence, am is in a
subgroup Ge of S. By Lemma 1 [6] we have that xe = ex, ye = ey and xe; ye 2 Ge.
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So by (12) we have that amexam = ameyam and thus ex = ey by cancellation in
Ge. Hence, x = y.

Corollary 3. [3] S is a group i� (8a 2 S) (91x 2 S) (a = axa).

Theorem 6. S is a nil-extension of a rectangular band i�

(8a; b 2 S)(9m 2 N)(am = ambam):

Proof. Let S be a nil-extension of a rectangular band E. Then for a; b 2 S

there existsm 2 N such that am = e 2 E and by Lemma 1 we have that ambam = e.
Thus am = ambam.

Conversely, it is clear that E 6= ;. For e; f 2 E we have e = efe and f = fef

and if ef = fe, then e = ef = f . Thus E is a rectangular band. For e 2 E and
x 2 S we have that e = exe, so ex; xe 2 E, i.e. E is an ideal of S and clearly for
every a 2 S there exists m 2 N such that am 2 E. Therefore, S is a nil-extension
of a rectangular band.

Corollary 4. [4] S is a rectangular band i� (8a; b 2 S) (a = aba).

Corollary 5. S is a nil-extension of a left zero band i�

(8a; b 2 S)(9m 2 N)(am = amb):

Corollary 6. S is a nil-semigroup i� (8a; b 2 S) (9m 2 N) (ambam =
amb).
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