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GRAPHS WITH THE REDUCED SPECTRUM

IN THE UNIT INTERVAL

Aleksandar Torga�sev

Abstract. By the reduced spectrum (r.s.) of a �nite connected graph, we mean the set
of all its eigenvalues with the maximal and the minimal eigenvalues excluded. In this paper we
characterize all �nite connected graphs having at least one positive and at least one negative
eigenvalue in their reduced spectrum, whose r.s. lies in the unit interval [�1; 1).

1. Introduction. Let G be any �nite connected graph with n vertices. Its
spectrum �(G) = f�1; �2; . . . ; �ng (�1 � �2 � . . . � �n) is the set of all eigenvalues
of its 0� 1 adjacency matrix.

Its reduced spectrum �0(G) is conditionally de�ned by

�0(G) = f�2; . . . ; �n�1g:

Throughout the paper we assume that n � 4, �2 > 0 and �n�1 < 0, thus G
has at least one positive and at least one negative eigenvalue in its r.s.

Obviously, �2 > 0 and �n�1 > 0 hold if only if �2 > 0, thus i� G has at least
two positive eigenvalues. So, by a result of Smith [2], we have

Theorem 1. G has the property �2 > 0 and �n�1 < 0 if and only if it has
one of the following graphs as an (induced) subgraph.

Consequently, all graphs considered have one of the graphs K, L as a sub-
graph. Hence, two possible cases arise:

I. G has K (but not L) as a subgraph;
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II. G has L as a subgraph.

Hence, in this paper we characterize all �nite connected graphs with the
property I or II, whose r.s. lies in the unit interval J = [�1; 1), i.e. whose spectrum,
except eventually the maximal and the minimal eigenvalues, lies in this interval.

We notice that our original aim was to give a similar characterization for the
closed unit interval [�1; 1], but because of numerous complications, we concluded
that this will be unusually hard.

Throughout the paper, we consequently apply the method of impossible sub-
graphs.

Call, �rst, any graph G with the property �0(G) � J admissible (with respect
to the mentioned property), and all other graphs { impossible. Then by the inter-
lacing theorem [1, p. 19], we have that each (induced) subgraph of an admissible
graph is admissible too. Hence, applying the technique of impossible subgraphs,
we obtain informations about the structure of admissible graphs.

Throughout the paper, we need to know the spectra of all particular graphs
with at most 8 vertices. For graphs with 4 or 5 vertices, we use the list of spectra
from [1], for graphs on 6 vertices (112 graphs) an internal publication, and for graphs
with 7 or 8 vertices the help of an IBM{360 computer of the Mathematical Institute
in Beograd. Knowing these spectra, we speak about the particular admissible and
impossible graphs with this number of vertices.

In the whole paper, by a white circle we denote an arbitrary subset of isolated
vertices in G, and by a black circle { any complete subgraph of G. By a line joining
such two circles, we denote the fact that all possible edges between these circles
exist. The number over a circle will always denote the number of its vertices.

Kn, Pn, Cn, and En(n � 1) will denote the complete graph, the path, the
circuit on n vertices, and the graph consisting of n isolated vertices, respectively.
For any n 2 N , we put �n = n+ 1.

Finally, if a1; . . . ; am are arbitrary vertices of G, (a1; . . . ; am) will denote the
subgraph of G induced by these vertices.

2. Case I. In this section we consider only the graphs having K (and not
L) as an induced subgraph. Then we can apply a recent result from [3], where all
connected graphs with the property �n�1 > �1 are determined.

Lemma 1. Each admissible G with the property I is bipartite.

Proof. It is easily seen that in this case G has no C3 as a subgraph. Bur since
all Cn(n � 5) are impossible graphs, G will not have any odd circuit as a subgraph,
thus it will be bipartite. �

Hence, in this case we have �n�1 = ��2 > �1, whence [3] can be applied. But
since all graphs with the property �n�1 > �1 are bipartite ([3]), whence �2 > 1,
we get that G is admissible if and only if �n�1 > �1. Consequently, we have

Theorem A. Let A(l;m; n), B(l;m; n; p) (l;m; n; p 2 N) be the following two
classes of graphs
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Then G, with the property I, is admissible if and only if

1Æ G = A(l;m; n), where lmn+ 1 < lm+mn+ n, or

2Æ G = B(l;m; n; p), where (n� 1)(p� 1) < (m+ n�mn)(p+ l� pl). �

3. Case II. In this section we describe all admissible graphs with L as an
induced subgraph.

1. SuÆciency. Consider, �rst, the following 7 classes of graphs, and check
when they give admissible graphs.

Proposition 1. The graph C(l;m; n) (l � 2) is admissible if and only if the
relation l(mn�m� 1) � 2mn� 3 holds.

Proof. As is easily seen, all the eigenvalues � of G = C(l;m; n) (� 6= 0;�1)
are determined by the equation (�2 �mn) (�+ 1� l)) = ml�.

Whence the statement is immediate.

More precisely, it can be shown that G is admissible exactly in the following
cases:

1Æ l = 2; m; n � 1; 4Æ l = 5; m = n = 2;

2Æ l = 3; n � 3; m � 1; 5Æ l � 5; n = 1; m � 1;

3Æ l = 4; n � 2; m � 1; 6Æ l � 5; n = 2; m = 1: �

Proposition 2. The graph D(l;m; n) (l � 2) is admissible if and only if the
relation (l � 2) (mn+m� 2) � ml � 1 holds.
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Proof. Since the corresponding equation for its eigenvalues �(� 6= 0;�1) is
(�+ 1� l) [�(� + 1�m)�mn] = ml�, the statement is immediate.

The last relation is satis�ed exactly in the following cases:

1Æ l = 2; m; n � 1; 4Æ l = 5; n = 1; m = 3; 4; 5;

2Æ l = 3; n � 2;m � 1; 5Æ l = 6; 7; n = 1; m = 3;

n = 3; m = 1; 6Æ l � 4; n = 2; m = 1;

3Æ l = 4; n = 1; m � 1; 7Æ l � 5; n = 1; m � 2: �

n = 2; m = 1;

Proposition 3. The graph E(k; l;m; n) (l � 2) is admissible if and only if
the relation (mn� 1) (kl + l � 2) � ml� 1 holds.

Proof. The corresponding equation will be

(�2 �mn)[�(� + 1� l)� kl] = ml�2;

and all the rest is easy.

The above inequality is satis�ed exactly in the following cases:

1Æ n = k = 1; l = 2; m � 1; 2Æ n = m = 1; k � 1; l � 2: �

l = 3; m � 3;

l � 4; m � 2;

Proposition 4. The graph F (l;m; n; p) (l � m � 2) is admissible if and
only if the relation (l � 2) (m� 2) < [p(l � 2)� l] [n(m� 2)�m] holds.

Proof. The corresponding equation will be

�2(�+ 1�m)(�+�l) = [(p+ l)�+ p(1� l)][(m+ n)�+ n(1�m)];

whence the statement follows.

The above relation is for l = 2; 3; 4, satis�ed exactly in the following cases:

1Æ l = 2; m = 1; n; p � 1; 3Æ l = 4; m = 2; p = 1; n � 1

m = 2; n; p � 1; m = 3; n = p = 1

2Æ l = 3; m = 2; p � 2; n � 1; p = 3; n � 5

m = 3; p = 1; n � 2; p � 4; n � 4

p = 2; n = 1; m = 4; p = 3; n � 4

p = 4; n � 5; p � 4; n � 3: �

p � 5; n � 4;

Proposition 5. The graph H(l;m; n; p) (l � 2) is admissible if and only if
the relation (m� 1) (l � 2) < (mn� n�m) (pl � l � 2p) holds.
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Proof. The corresponding equation will be

�2(�2 �m)(�+ 1� l) = [(m+ n)�2 �mn][(p+ l)�+ p(1� l)];

whence the statement. �

Concerning the class X(l;m; n; p), we exclude the case m = 1, when X is an
F -graph, moreover we suppose n � m � 2 (l; p � 1). �

Proposition 6. The graph X(l;m; n; p) (n � m � 2) is always impossible.

Proof. The corresponding equation will be

�(�+1�m)(�+1�n)(�+1� l) = [(p+ l)�+ p(1� l)] � [(m+n)�+m+n�2mn]:

Hence, if l = m = n = 2, we get an impossible graph. Thus, we necessarily
have l = 1. But then we obtain the graph

which has a similar induced subgraph with parameters n = 2, �p = 2, m = 2. Since
the last subgraph is impossible, it follows that the considered graph is impossible
too. �

Concerning the graph Y (l;m; n; p) (l � 2), we exclude the case m = 1 since
Y (l; 1; n; p) = H(l; 1; n; p).

Proposition 7. If m � 2, then the graph Y (l;m; n; p) (l � 2) is always
impossible.

Proof. The corresponding equation will be

�2(�+ 1� l)(��m) = [(m+ n)�2 + n�(1�m)�mn] � [(p+ l)�+ p(1� l)]:

Whence, if l � 2, m � 2, it is always an impossible graph. �

2. Necessity. Let G be any admissible graph with the property II. In the
sequel, we shall prove that G is one of the graphs C, D, E, F , H , A special partition
of the vertex set V (G) will be an important step in this direction. Namely, let T i

(i = 1; 2; 3; 4) be the set of all vertices in G, outside of L, which are adjacent exactly
to the vertex i. A similar meaning will be given to Tij , Tijk (i, j, k-distinct) and
T1234. The set of all these vertices is denoted by T (the �rst level of G). Similarly,

we get the second level ~T and the third level ~~T in G.

Later we shall see that ~~T = ;, so that each admissible graph has the property
V (G) = V (L) + T + ~T (+ denotes disjoint union).

Now, we want to determine the edge structure of al these parts as well as the
edge structure between these parts. Therefore, for any such part A we choose a
vertex a 2 A and test the subgraph L+ fag; then choose two vertices a; b 2 A and
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test the subgraph L + fa; bg in the two possible cases (a, b adjacent or not). In
this way we can conclude that, for example, A is empty, or consists only of isolated
vertices, or is complete, or none of these things. Then we write A=A = ;, 0, 1, �,
respectively.

Similarly, for any two parts A, B, we write A=B = ;, 0, 1, �. The last case is
also called non-determined.

In this way, we easily obtain the following two propositions.

Proposition 8. All subsets in T , except eventually T3, T12, T123, T124 and
T1234 are empty.

Proposition 9. The following relations hold: T3=T3 = 0, jT12 � 1,
T123=T123 = 1, T1234=T1234 = 1, T124=T124 = �.

Therefore, in each admissible G, T3 consists only of isolated vertices, and
T123, T124 are complete. Denote: jT3j = n, T123 = Kr, T1234 = Km (n; r;m � 0).
The structure of T124 is determined in Proposition 10.

Concerning the edge structure between these subsets, we obtain the following
table. Because of symmetry, this table is upper-triangular.

T3 T12 T123 T124 T1234
T3 1 0 � 1
T12 1 0 ;
T123 1 ;
T124 0
T1234

Next, we shall use the following abbreviations. Let P be any set of isolated
vertices in G, and let a 62 P be non adjacent to all x 2 P , and with same neighbors
as each x 2 P . Then we write a � P , and can extend P to the wider white circle
P + fag = P .

Similarly, let Q be any black circle in G (i.e. a complete subgraph of G), and
a 62 Q be adjacent to each x 2 R, and with the same neighbors as each x 2 Q.
Then we write a ' Q, and we can extend Q to the wider black circle Q+ fag = �Q.

In the sequel, we investigate all the possible cases (excluding symmetric ones),
arising when G consists of L and T only. We prove that in each of these cases G is
one of the graphs C, D, E, F , H .

First, we discuss the structure of T124. Let M(p; q) = Kp + Eq (p; q � 0) be
the following disconnected graph:

Then we have
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Proposition 10. In each admissible G, T124 =M(p; q) holds.

Proof. By testing all the possible subgraphs H = L+ T124 with three or four
vertices in T124 we obtain that the following two subgraphs are impossible in T124:

Hence, trivially, T124 =M(p; q) (p; q � 0).

Next, discussing this subgraph with general parameters p, q, we �nd that this
graph is possible i� one of the following holds:

1Æ p = 0, q � 1;

2Æ p = 2, q � 0;

3Æ p = 3, q = 0. �

Proposition 11. L = C(2; 1; 1) holds.

Proposition 12. If G = L+ T3, then it is a C-graph.

Proof. Since 4 � T3 in G, we obviously have that G = C(2; 1; �n) (�n � 2). �

Proposition 13. If G = L+ T12, then it is an E-graph.

Proof. Obvious, since G = E(1; 2; 1; 1). �

Proposition 14. If G = L+ T123, then G = C(r + 2; 1; 1).

Proposition 15. If G = L+ T124, then it is a C-graph or an F -graph.

Proof. We have that 3 � Eq , whence if p = 0 it follows G = C(2; �q; 1) (�q � 2),
and G = F (2; p; �q; 1) (p; �q � 1) if p � 2. �

Proposition 16. If G = L+ T1234, then it is a C-graph.

Proof. We have 3 ' T1234 = Km, and 1 ' 2, whence G = D(2; �m; 1) ( �m �
2). �

Proposition 17. If G = L+ T3 + T12, then it is an H-graph.

Proof. We obviously have that G = H(2; 1; 1; n) where n = jT3j � 1. �

Proposition 18. If G = L+ T3 + T123, then it is a C-graph.

Proof. Evidently, 4 � T3, 1; 2 ' T123 = Kr, hence G = C(r + 2; 1; �n)
(r � 1; �n � 2). �

Proposition 19. If G = L + T3 + T124, then one of the following cases
occurs:
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1Æ T3=T124 = 0, n = 1, p = 0, when G is a C-graph;

2Æ T3=T124 = 1, when G is an F -graph;

3Æ T3=T124 = 1, except exactly one edge, p = 0, when G is an H-graph;

4Æ T3=T124 = 1 except all edges a0b (a0 2 T3 �xed, and b 2 Eq � T124), p = 0,
when G is an H-graph.

Proof. First, consider the edge structure T3=T124. By testing all the possible
subgraphs L + T3 + T124 with at most 3 vertices in T3 and in T124, we get the
following six impossible subgraphs:

If p � 2, by the subgraphs (1), (2) and (4), we get that each a 2 T3 is adjacent
to all b 2 Kp and to all b 2 Eq , except eventually at most one b0 2 Eq (assuming
that a is adjacent to at least one b 2 Eq). In this case, denote by A the set of all
a 2 T3 adjacent to all vertices b 2 T124, and by B the set of all a 2 T3 adjacent to
all b 2 T124 except exactly one vertex of Eq . Then, by the impossible subgraphs (3)
and (5), we conclude that jBj � 1. Therefore, if jBj = 0, we get that T3=T124 = 1
except exactly one edge ab (a 2 T3, b 2 Eq).

Next, let p = 0, and assume that T3=T124 is not zero. Then each b 2 T124 = Eq

is adjacent to all a 2 T3 except eventually an a0 2 T3. Let M be the set of all
b 2 Eq adjacent to all vertices a 2 T3, and S the set of all b 2 Eq non adjacent to
exactly one vertex from T3. By the subgraph (5), we get that all b 2 S are non
adjacent to exactly one vertex a0 2 T3.

If now jSj = 1, we get that T3=T124 = 1 except exactly one edge ab (a 2 T3,
b 2 Eq). If otherwise, jSj � 2, by the subgraph (4), we conclude that M = ;, thus
T3=T124 = 1, except all possible edges a0b (b 2 Eq).

In view of all these results, we conclude that only cases 1Æ{4Æ are possible.
Next we discuss each of these cases separately.

1Æ If T3=T124 = 0, then necessarily p = 0, and we obtain that G = C(2; 1; q; 1)
(q � 1).

2Æ If T3=T124 = 1, then obviously 3 � Eq , 4 � T3, whence we get that
G = F (2; p+ 2; �q; �n) (p � 0, �q � 1, �n � 2).

3Æ In this case, by the impossible subgraph (6), we conclude that p = 0, thus
T124 = Eq (q � 1). Then 3 � Eqnfb0g, 4 � T3nfa0g, whence G = H(2; q; 1; n)
(q; n � 1).

4Æ In this case p = 0 again, when 4 � T3nfa0g, whence we get that G =
H(2; 1; q; n) (q; n � 1).
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This completes the proof. �

Proposition 20. If G = L+ T3 + T1234, then it is a C-graph.

Proof. In this case obviously 3 ' T1234 = Km and 4 � T3, whence G =
C(2; �m; �n) ( �m; �n � 2). �

Proposition 21. If G = L+ T12 + T123, then G is an E-graph.

Proof. Then 1; 2 ' T123 = Kr, whence G = E(1; r + 2; 1; 1). �

Proposition 22. If G = L+ T12 + T124, then p = 0, and G is an E-graph.

Proof. Let p � 2, a; b 2 Kp and c 2 T12. Then the subgraph (c12ab4) is
impossible, contradiction. Hence necessarily p = 0, thus T124 = Eq (q � 1). But
then 3 � Eq , whence G = E(1; 2; �q; 1) (�q � 2). �

Proposition 23. If G = L+T123+T124, then G is a C-graph or an F -graph.

Proof. We have that T124 = M(p; q) (p; q � 0). Then 1; 2 ' T123 = Kr,
and 3 � Eq , whence if p = 0, we get G = C(r + 3; �q; 1), and if p � 2, we get
G = F (r + 3; p; �q; 1) (p; �q; r � 1). �

Proposition 24. If G = L+T124+T1234, then p = 0 and G is an F -graph.

Proof. In this case obviously 3 ' T1234 = Km(m � 1). If p � 2, then
choosing a; b 2 Kp and c 2 T1234 we get the impossible subgraph (ab123c). Hence,
necessarily, p = 0, whence G = F ( �m; 2; 1; q) ( �m � 2; q � 1). �

Proposition 25. If G = L+ T3 + T12 + T123, then G is an H-graph.

Proof. We have that 1; 2 ' T123 = Kr, whence obviously G = H(r+2; 1; 1; n)
(r; n � 1). �

Proposition 26. If G = L+ T3 + T12 + T124, then p = 0, T3=T124 = 1, and
G is an F -graph.

Proof. By Proposition 22, we necessarily have p = 0. Next, let a 2 T3,
b 2 Eq = T124 be a pair of non adjacent vertices, and let c 2 T12. Then the
subgraph (ac4b) is impossible, contradiction. Consequently, T3=T124 = 1.

Now we obviously have that 4 � T3, 3 � Eq , whence G = F (2; 1; �q; �n) (�q; �n �
2). �

Proposition 27. If G = L+ T3 + T123 + T124, then G is one of the graphs
C, F , H.

Proof. In view of the structure T3=T124, we distinguish four cases according
to Proposition 19.

1Æ In this case p = 0, n = 1 whence G = H(r + 2; 1; q; 1) (r; q � 1).

2Æ Then 4 � T3, 3 � Eq , 1; 2 ' T123, whence G = C(r + 2; �q; �n) (�q; �n � 2) if
p = 0, and G = F (r + 2; p; �q; �n) (�q; �n � 2) if p � 2.
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3Æ In this case p = 0, 4 � T3nfa0g, 3 � T124nfb0g, whence G = H(r+2; q; 1; n)
(r; q; n � 1).

4Æ Then p = 0, 4 � T3nfa0g, whence we have that G = H(r + 2; 1; q; n)
(r; q; n � 1). �

Proposition 28. If G = L + T3 + T124 + T1234, then p = 0, and G is an
F -graph.

Proof. By Proposition 24 we necessarily have that p = 0, whence 3 ' T1234 =
Km.

We are now proving that T3=T124 = 1. Let, in the opposite case, a 2 T3 and
b 2 T124 be nonadjacent, and c 2 T1234. Since the subgraph (1234abc) is impossible,
we necessarily have that T3=T124 = 1. Then 4 � T3, whence G = F (2; �m; q; �n)
( �m; �n � 2; q � 1). �

Proposition 29. If G = L + T12 + T123 + T124, then p = 0, and G is an
E-graph.

Proof. By Proposition 22 we necessarily have p = 0. But then 3 � T124 = Eq ,
whence G = E(1; r + 2; �q; 1) (r � 1; �q � 2). �

Proposition 30. If G = L+T3+T12+T123+T124, then p = 0, T3=T124 = 1,
and G is an F -graph.

Proof. By Proposition 26 we obtain that p = 0 and T3=T124 = 1. Then
4 � T3, 3 � Eq1; 2 ' T123 = Kr, whence G = F (�q; �n; r + 2; 1) (�q; �n � 2; r � 1). �

In what follows, we investigate the structure of the second level ~T in an
arbitrary admissible G. By the method of impossible subgraphs, we immediately
have

Proposition 31. In ~T only remains ~T124.

Proposition 32.
~~T 124 = ;.

Whence, the third level ~~T in each admissible G is empty.

Lemma 2. Each x 2 ~T124 is non adjacent to every a 2 Kp � T124.

Proof. Let x be adjacent to some a 2 Kp � T124, and let b 2 Kp. Then if x, b
are adjacent, we get the impossible subgraph (321abx), while otherwise, we obtain
the impossible subgraph (12ab4x).

Hence, each x 2 ~T124 is adjacent only to some vertices of Eq � T124. �

Lemma 3. Two vertices x; y 2 ~T124 cannot be adjacent to the same vertex
a 2 T124.

Proof. Let, in the opposite case, x; y 2 ~T124 be adjacent to the same vertex
a 2 T124. Then, if x, y are adjacent, we get the impossible subgraph (234axy),
while otherwise we obtain the impossible subgraph (312axy). �
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Proposition 33. j ~T124j � 1.

Proof. Let, in the opposite case, x; y 2 ~T124 be adjacent to the vertices
a; b 2 T124, respectively. Then x, b as well as y, a are non adjacent. Therefore, if x,
y are adjacent, we obtain the impossible subgraph (xa4by) = C5, while otherwise
we get the impossible subgraph (xa4by) = P5.

Proposition 34. If G = L+T124+ ~T124, then p = 0, and G is an H-graph.

Proof. If, in the opposite case, p � 2, choose x 2 ~T124 adjacent to a vertex
a 2 Eq � T124, then b; c 2 Kp � T124, when we obtain the impossible subgraph
(bc12ax). Therefore p = 0.

Next, put E1 = fa 2 Eq j x; a adjacentg, E0 = EqnE1 and q1 = jE1j � 1,
q0 = jE0j � 0. Then 3 � E0, whence G = H(2; q1; q0; 1) (q1; q0 � 1). �

Proposition 35. Let G = L+ T3 + T124 + ~T124. Then p = 0, T3=T124 = 1,
and G is an H-graph.

Proof. By the previous proposition, we have that p = 0. Assuming next
that a 2 E1 and b 2 T3 are not adjacent, we obtain the impossible subgraph
(b34ax) = P5. Similarly, assuming that b 2 T3 and c 2 E0 are non adjacent, and

then choosing an a 2 E1 and x 2 ~T124, we conclude that a, b are adjacent, whence
the impossible subgraph (c12abx) arises. Consequently T3=E1 = T3=E0 = 1 thus
T3=T124 = 1. Hence 4 � T3, 3 � E0, whence denoting q1 = jE1j � 1, q0 = jE0j � 0,
we obtain that G = H(2; q1; �q0; �n) (q1; �q0 � 1; �n � 2). �

Proposition 36. G = L+ T12 + T124 + ~T124 is always impossible.

Proof. Choosing a 2 T12, b 2 E1 � T124 and x 2 ~T124, we obtain the
impossible subgraph (a12bx). �

Proposition 37. If G = L+ T123 + T124 + ~T124, then G is an H-graph.

Proof. By Proposition 34 we get p = 0. But then 1; 2 ' T123 = Kr, 3 � E0,
whence G = H(r + 2; q1; �q0; 1) (r; q1; �q0 � 1). �

Proposition 38. G = L+ T1234 + T124 + ~T124 is always impossible.

Proof. Choosing x 2 ~T124, a 2 E1 � T124, b 2 T1234, we get the impossible
subgraph (123xab). �

Therefore, it remains only to test the graph L+ T3 + T123 + T124 + ~T124,

Proposition 39. If G = L+T3+T123+T124+ ~T124, then G is an H-graph.

Proof. By Proposition 35, we have that p = 0, T3=T124 = 1. But then 3 � E0,
4 � T3, whence G = H(r + 2; q1; �q0; �n) (r; q1; �q0 � 1; �n � 2), which completes the
proof. �

Summarizing all the propositions 11{39, we conclude with the following main
theorem:
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Theorem B. In case II, each admissible graph G is one of the graphs C, D,
E, F , H.

In such a way, by Theorems A and B, having in mind Proposition 1 { 5,
we characterized all connected graphs whose reduced spectrum lies in the interval
[�1; 1).
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