
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 35 (49), 1984, pp. 167{171

SOME HEURISTICS IN AUTOMATIC THEOREM PROVING

Drago�s Cvetkovi�c and Irena Pevac

Abstract. We propose two heuristics in automatic theorem proving: an analogy heuristic
and a heurietic for detecting the logical equivalence of formulas. The �rst heuristic tries to
establish an analogy between some subtheories of two non-analogous theories and to prove in this
way a formula in one theory using a theorem in the second one. The second heuristic is related
to the case when one should establish the logical equivalence of two formulas by instantiation of
de�nitions. The structure of the de�nition set is represented by a digraph and a digraph coloring
language is used.

When implementing the interactive programming system \GRAPH" for the
classi�cation and extension of knowledge in graph theory [4], [5] we came across
some heuristics in automatic theorem proving which might be of more general
interest.

To avoid technical discussions we consider here �rst order calculi without
constants and functions. Beside the proper (basic) predicates bi of the theory the
re are other predicates di introduced by de�nitions of the form di , F , where F is a
formula containing previously de�ned predicate letters. Arguments of predicatcs are
not considered here. Therefore both, a predicate and the corresponding predicate
letter will be denoted by the same symbol in further text. The form of the de�nition
excludes recursive de�nitions but this is not essential limitation. Further, we shall
denote by L(F) the set of predicate letters occurring in a formula F . The predicates
from the set L(F) are called direct predecessors of di. A predicate d is a predecessor

of di if d = di, or there is a predccessor k of di and d is a direct predecessor of k.
The set of all predecessors of elements of L(F) is denoted by P (F). For an arbitrary
formula F , let us introduce the support S(F) of F as the set of those predecessors
of elements of L(F) which are basic predicates, and the de�nition set D(F) of F
as the set of predecessors of elements of L(F) that are not basic predicates. In
addition, the level of bi is equal to zero, and the level of di is greater by one than
the maximal level of elements of L(Fi), Fi being the de�niens of the de�nition of
di.

AMS Subject Classi�cation (1980): Primary 68G15

168 Drago�s Cvetkovi�c and Irena Pevac

The de�nition structure can be suitably represented by a digraph G whose
vertices are all bi0s and all di0s. If di , F is a de�nition, an arc is going from each
vertex denoting an element of L(F) to di, and there are no other arcs in G.

Since we assume that axioms contain only basic predicates we can represent
the axiom set as hypergraph on vertices b1; b2; . . . with hyperedgesL(A1); L(A2);. . .
where A1; A2; . . . are axioms.

Graph theory is an example of the theory with a large number of de�nitions
and we had in particular it in mind when developing all these concepts. On the
contrary some algebraic theories (e.g. group theory) can be developed using a few
predicates and our theory would not be of greater advantage there.

1. An analogy heuristics. Two non-formal theories are called analogous if
their formal theories are the same. This includes, for example: 1Æ the cases when
two phenomena are described by the same di�erential equation (e.g. analogies of
some mechanical and electrical quantities) and 2Æ mapping a theorem from an
algebraic structure to a structure isomorphic to it (e.g. dual Boolean algebras and
the corresponding duality principle). Examples and the role of such analogies are
well known. We shall concentrate on the case when some subtheories of non-
analogous theories are analogous. Capability of detecting such analogies would
shift the power of any fully automatic or interactive theorem proved toward the area
of nontrivial theorems. The analogy principle is little used in automatic theorem
proving (cf. [2], [6]). Here we o�er an analogy heuristic which might be incorporated
into natural deduction theorem provers.

Let � and � 0 be �rst order calculi with the same deduction rules. A formula
F from a theory � is proved by analogy with theory � 0 (we allow � 0 = �) if the
following holds:

a) There exists a theorem F 0 of � which is analogous to F in the sense that
there is a bijection f : L(F 0) ! L(F) between the sets of their predicates, which
maps F 0 onto F , modulo renaming variables.

b) The mapping f can be extended to a mapping f : F (L0) [S(F 0)! P (F)
such that for any d0

i
2 L(F 0) if d0

i
, Fi(b

0

i1
; b0

i2
; . . . ; b0

ik
) in the theory � 0 then

f(d0
i
) , Fi(f(b

0

i1
); f(b0

i2
); . . . ; f(b0

ik
)) in the theory � . While b0

ij
(1 � j � k) are

some basic predicates in � 0, their images f(b0
ij
) need not be basic predicates of � .

c) Formulas obtained from axioms of � 0 by the mapping f are theorems of � .

The proof of F is obtained by concatenating proofs of the mapped axioms of
� 0 in � and the mapped proof of F 0 from � 0 into � . We say that the last part of the
proof of F is done by analogy with the proof of F 0.

In fact, a part of theory � is isomorphically embedded into the theory � by
mapping f . Such kind of embedding of a theory into another has been used in the
literature from other points of view (see, for example, [7], [3]). This isomorphic
embedding enables one to construct a proof of F in � by analogy with the proof of
F 0 in � 0.

Some heuristics in automatic theorem proving 169

Instead of axioms of � one can consider a set of theorems in � 0 from which
F 0 can be derived.

In case when the predicates from the de�nition set of F 0 in � 0 have analogous
de�nitions in � an extension of f is easily determined. Otherwise, a way to enhance
the chances for the success is to give the program the capability of introducing new
de�nitions in � during the process of detecting an analogy.

The corresponding program representing itself a heuristic should incorporate
further heuristics for several subtasks: when to start the whole procedure, how long
to search for the mapping f , and �nally how much time to spend in attempts to
prove the transformed axioms of the theory � 0.

To improve the described heuristic, we can allow the formula F in � and the
theorem F 0 in � to be transformed by de�nitions (instantation or vice versa) or by
logically valid formulas before detecting an analogy, or when the searching was not
successful.

The actual usage of this heuristic in automatic theorem proving assumes
that de�nition sets of the two theories are stored in the computer. In the system
\GRAPH" a well organized set of de�nitions from graph theory is stored and,
perhaps, the analogy heuristic acting between di�erent parts of graph theory will
be implemented.

2. Detecting equivalence of formulas. There is often a need in automatic
theorem proving to recognize that two formulas are logically equivalent. We propose
here a heuristic for that after developing necessary tools. We shall use a special
coloring and recoloring of vertices of the digraph G. Vertices are either uncolored or
colored by one of colors: blue, yellow, green, white. Let us introduce the following
commutative composition of colors:

green blue yellow white uncoloured

green green green green green green

blue green blue green blue blue

yellow green green yellow yellow yellow

We shall say that a vertex colored blue or yellow or green is transformed if it
is recolored by white and a direct predecessor y of x is recolored by the composition
of the color of y and the previous color of x.

Suppose we want to establish whether formulas F1 and F2 are equivalent. If
L(F1) 6= L(F2) we try to instantiate some de�niLions so that for new formulas F 0

1,
F 0

2 (F 0

1 , F1; F
0

2 , F2) we have L(F 0

1) = L(F 0

2). To avoid the explosion of the
number of formulas when expanding all possible de�nitions we use some coloring
of G.

Color L(F1) in blue and L(F2) in yellow. Then, of course, L(F1) \ L(F2)
is colored in green while L(F1) n L(F2) remains blue and L(F2) n L(F1) remains
yellow. We shall try to eliminate blue and yellow vertices by transforming them,

170 Drago�s Cvetkovi�c and Irena Pevac

or some green vertices. Obviously transforming a vertex means to instantiate the
corresponding de�nition.

A blue or yellow vertex x is said to have property � if the following holds:
there is a non-white vertex y, colored di�erently from x, such that x and y have a
common predecessor. We follow two simple rules:
1. Transform always a vertex with property � and with a highest level (among
vertices with property �).
2. If a blue or a yellow vertex is a predecessor of a green one (i.e. there is a path from
a blue or yellow vertex to a green one) consider the smallest level green vertex on
this path, and transform all the vertices on that path starting with the considered
green one.

The process stops when none of these operations can be applied: If there are
no blue or yellow vertices we are done. One should expand de�nitions determined
by white vertices in both F1 and F2 in the order given by the vertex transformations
of G proposed by the algorithm. Otherwise the attempt failed.

This algorithm can be improved since sometimes it is better to apply 2Æ before
1Æ. One can mark the coloring position when 2Æ is applicable and go back to it if
further application of 1Æ has failed.

Once we got formulas F 0

1 and F 0

2 with L(F 0

1) = L(F 0

2) transform them both
to the prenex normal form, (we can consider F1 and F2 as closed) and match
quanti�ers (i.e. the corresponding variables) in all allowed ways. Here we have in
mind the possibility of changing the order of the quanti�ers of the same type. In
kernels K1 and K2 of the prenex forms replace any occurrence of a predicate by
a logical variable using the same variable for the same predicate (hawing in mind
its arguments, too). So we obtain propositional formulas P1 and P2. If P1 , P2
is a tautology then F1 , F2 is true. If we incorporate the detecting of equality of
terms on the level of arguments of the predicate, and further some properties on
the level of predicates such as the symmetry, etc. the application of the proposed
heuristic will be more successful.

Example. In arithmetical graph theory [4] we have a basic predicate S1
(X;Y; U) saying that \vertices X and Y are joined by line U", and de�nitions:

R1(X;Y), (9U)S1(X;Y; U) \X and X are adjacent",
Q1(X), (8Y):R1(X;Y) \X is isolated",
R2(X;U), (9Y)S1(X;Y; U) \vertex X and line U are incident",
P1(X), (8X)R1(X;Y) \graph is complete".

To prove that to say \If graph is complete then there are no isolated ver-
tices" is the same as to say \If there is a vertex not incident with a line then
graph is not complete", we have to examine formulas: P1) :(9X)Q1(X) and
(9X)(8U):R2(X;U)) P1. The corresponding digraph G is given in Fig. 1 with
its original and �nal colouring.

Some heuristics in automatic theorem proving 171

Fig. 1

We have to transform one after another Q1, R1 in the �rst formula, and R2
in the other one. The rest is technical.

Very often in automated theorem proving we have to compare a subgoal S
with known theorems Ti stored in the computer. In order to avoid the whole
procedure with each Ti, we should select those Ti which promise a success. We
could classify the theorems Ti by some parameters related to coloring of G induced
by Ti and S. These parameters can include number of yellow (blue) vertices, the
existence of paths between yellow (blue) and green vertices, and the levels of yellow
(blue) vertices.

The problem of de�nition instatiation in automatic theorem proving is dis-
cussed, for example, in [1], [2]. Experience shows that the de�nition instatiation
should be carefully controlled and applied only if all other strategies fail or if it will,
\do some good". It is recommended to instantiate de�nition of \strange" terms.
In a formula of the form A) B one should instantiate the de�nition of the main
predicate in the conclusion B, or instantiate a de�nition into the hypothesis A if
we �nd in a conjunctive position of A a possible match for B.

All these recommendations are covered by our recoloring heuristics. \Stran-
ge" terms can be explained as predicates with a high level. Instantiation of a
de�nition will \do some good" if our recoloring heuristics are applicable and in
particular it is applied to the case when it will lead to the matching of a conjunct
of A with B in A) B. In our opinion, the instantatiation of the main predicate
in B is not always recommendable; one should look at the coloring structure of the
de�nition digraph and apply recoloring heuristics.

This heuristic is partially implemented in the system \GRAPH".

REFERENCES

[1] W.W. Bledsoe, P. Bruell, A man-machine theorem-proving system, Arti�cial Intelligence
5 (1974), 51{72.

[2] W.W. Bledsoe, Non-resolution theorem proving, Arti�cial Intelligence 9 (1977), 1{35.

[3] B.R. Bori�ci�c, Equational reformulation of intaitionistic proposilional calculus and classical
�rst-order predicate calculus, Publ. Inst. Math. (Beograd), 29(43) (1981), 23{28.

[4] D. Cvetkov�c, \A project for using computers in further development of graph theory", The
Theory and Applications of Graphs, (Proc. 4th Internat. Conf. Theory and Application
of Graphs, Kalamazooo 1980) ed G. Chartrand, et all, John Wiley & Sons, New York-
Chichester-Brisbane-Toronto-Singapore 1981, 285{296.

172 Drago�s Cvetkovi�c and Irena Pevac

[5] D. Cvetkovi�c, I. Pevac, Discussing graph theory with a computer III, Man-machine theorem
proving, Publ. Inst. Math. (Beograd), 34(48) (1983), 37{47.

[6] R.E. Kling, A paradigm for reasoning by analogy, Arti�cial Intelligence 2 (1971), 147{178.

[7] S.B. Pre�si�c, Equational reformulation of formal theories, Publ. Inst. Math. (Beograd)
19(33) (1975), 131{138.

(Received 20 06 1983)

