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A HEREDITARY PROPERTY OF HM-SPACES

Stojan Radenovi�c

Abstract. We have shown that a class of HM-spaces is invariant under projective topology,
in particular, arbitrary product, subspace and separated quotient. We have shown also that
(E;�(E;E0)) is an HM-space for every locally convex space (E; t) (see [2, Theorem 513]).

The nonstandard theory of topological vector spaces and in particular the
construction of the nonstandard hull of an arbitrary topological vector space has
been studied by Henson and Moore in [2] and [3]. We recount the principal ideas
and de�nitions.

Let (E; t) be a locally convex space and let �M be a nonstandard extension
of a superstructureM which contains (E; t). An element p 2� E is called t-�nite if
for every t-neighborhood U of zero there exists an integer n such that x 2 n�U and
the set of t-�nite elements of �E is denoted by �n t(

�E). The monad of O is de�ned
by �t(O) =

T
U2U

�U , where U is a base of balanced, covex neighborhood of zero.

Both �n t(
�E) and �t(O) are vector spaces over the same �eld as E. We denote the

quotient vector space fint(
�E)=Mt(O) by Ê, the canonical quotient mapping of

�n t(
�E) onto Ê by � and the quotient topology de�ned on Ê by t̂. The nonstandard

hull of (E; t) with respect to �M is the separated quotient space (Ê; t̂). Clearly,
the map taking x to �(�x) is a topological vector space isomorphism of (E; t) into

(Ê; t̂). An element p 2� E is called t-pre-near-standard if for each t-neighborhood
U there exists y 2 E such that x 2� y +� U and the set of t-pre-near-standard
elements of �E is denoted by pns t(

�E).

The nonstandard hull (Ê; t̂) of a locally convex space (E; t) always contains
�(pns t(

�E)) = the completion of (E; t) and the nonstandard hulls determined by
di�erent nonstandard extensions �M need not even be isomorphic to each other.
When every nonstandard hull (Ê; t̂) is equal to �(pns t(

�E)), we say that the non-
standard hulls of (E; t) are invariant, i.e. we say that a locally convex space (E; t)
is an HM-space (see [4]).
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Throughout this paper (E; t) will denote a separated locally convex space
over K, where K denotes the real or complex numbers.

Henson and Moore have shown the following [3]:

Theorem 1 (Henson and Moore). The following conditions on a locally con-

vex space (E; t) are equivalent:

(a) The nonstandard hulls of (E; t) are invariant;

(b) The nonstandard hull of (E; t) is isomorphic to the completion of (E; t)
for every choice of the enlargement �M;

(c) �n t(
�E) = pns t(

�E) for every choice of �M;

(d) The nonstandard hull of (E; t) is isomorphic to the completion of (E; t)
for some choice of the enlargement �M;

(e) �n t(
�E) = pns t(

�E) for some choice of �M;

(f) If F is an ultra�lter on E and for each t-neighborhood U of zero there is

an integer n such that nU 2 F , then F is a Cauchy �lter.

For proofs of our theorems ([2], [3], [4] and [5]) we use a conditions (e) or (f)
of preceding theorem.

Theorem 2. Every separated quotient (E=H; t) of an HM-space (E; t) is an

HM-space.

Proof. Let �M be a nonstandard extension of a superstructure M which
contains a space (E; t). According to the condition (e) of the preceding theorem
and [2, Theorem 1.2] it is suÆcient to prove that �n t

�(E=H) � pns t
�(E=H).

Let x 2 �n t
�(E=H). Then, by [1, De�nition 1.1] for each t-neighborhood U of

zero there exists an integer n such that x 2 n�(U + �H) = n�U + �H , i.e. x 2
�n t(

�E)+ �H . By assumption (E; t) is an HM-space and then x 2 pns t(
�E)+ �H .

From this and [2, Theorem 1.2. iv] it follows that for every t-neighborhood U of
zero there is y 2 E such that x 2 �y + �U + �H = �(y +H) + �(U +H), i.e.
x 2 pns t

�(E=H). Hence, the separated quotient space (E=H; t) of a HM-space
(E; t) is an HM-space.

Theorem 3. A locally convex,space (E; t) is an HM-space, if and only if all

its subspaces are HM-spaces.

Proof. The suÆciency follows immediately from [1, Theorem 4.6]. To prove
the necessity we utilize condition (f) of Theorem 1. Let F be an ultra�lter on
its subspace (H; tH) with the property that for each tH -neighborhood U of zero,
there exists an integer n such that nU 2 F (tH is the relative topology in H). By
[1, chapter I (6), propositon 10] F is the base of an ultra�lter on the space (E; t)
such that for every t-neighborhood V of zero, there exists an integer n such that
nV 2 F (V � V \ H and for some: n(V \ H) 2 F i.e. nv 2 F). By assumption
(E; t) is an HM-space and then F is a base of Cauchy �lter according to Theorem
1 (f). We want to show that F is a Cauchy �lter on the space (H; tH). If V
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is a tH -neighborhood of zero, there exists a t-neighborhood U of zero such that
V � U \H . For t-neighborhood U of zero there exists A 2 F such that A�A � U ,
i.e. A \H � A \H � A� A � U and then A \H � A \H � U \H � V . Hence,
for each tH -neighborhood V of zero there exists B 2 F (B = A \ H) such that
B � B � V , i.e. F is a Cauchy �lter on the space (H; tH), so the condition is
necessary.

Theorem 4. The topological product of a family (Ei; ti) i 2 I of HM-spaces

is an HM-space if and only if every space (Ei; ti) is an HM-space.

Proof. The necessity follows from the preceding theorem. To prove the
suÆciency we use condition (e) of Theorem 1. Clearly, it is suÆcient to prove
that �n t

�(
Q
i2I

Ei) � pns t
�(
Q
i2I

Ei), where t is a product topology. Let x 2

�n t
�(
Q
i2I

Ei) and let U =
nQ
i=1

V1 �
Q

i6=1;2;...;n

Ei be a neighborhood of zero of the

space

�Q
i2I

Ei; ti

�
. By [2, De�nition 1.1] there exists an integer n such that

x 2 n�U = n�

 
nQ
i=1

V1 �
Q

i6=1;2;...;n

Ei

!
. According to transfer principle it follows

that x(i) 2 n�Vi for i 2 f1; 2; . . . ; ng and x(i) 2 �Ei for i 6= 1; 2; . . . ; n. There-
fore, x(i) 2 �n ti(

�Ei) = pns ti(
�Ei) for i 2 f1; 2; . . . ; ng, i.e. for neighborhoods

Vi there exists y(i) 2 Ei such that x(i) 2 �y(i) + �Vi and y(i) = O 2 Ei for

i 6= 1; 2; . . . ; n. Hence, for each t-neighborhood U of zero of the space

�Q
i2I

Ei; t

�

there exists y 2
Q
i2I

Ei such that x 2 �y + �U , i.e. x 2 pns t
�

�Q
i2I

Ei

�
.

Theorem 5. Let (Ei; ti), i 2 I, be a family of HM-spaces. Then the linear

space E equipped with a locally convex separated topology t is an HM-space, if t is

the projective topology for ti, i 2 I.

Proof. Let F be an ultra�lter on E with the property that for each t-
neighborhood V of zero, there exists an integer n such that nV 2 F . By [1,
Chapter I(6), Proposition 10] every fi(F) is a base of ultra�lter for which the con-
dition (f) of Teorem 1 holds. But, locally convex spaces (Ei; ti) are HM-spaces
and therefore for every ti-neighborhood Vi of zero there exists A 2 F such that

A�A � f�1i (fi(A�A)) � f�1i (Vi), so A�A �
nT
i=1

f�1i (Vi). Hence, F is a Cauchy

�lter on the space (E; t) and according to Theorem 1 (f), the theorem is proved.

Corollary 1. The projective limit of any family of HM-spares is an HM-

space.

Proof. The proof follows Theorem 5 and [5, chapter II.5].
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Corollary 2. If (E; ti), i 2 I is any family of a HM-spaces, then

(E; sup ti)i2I is an HM-space.

Proof. A topology sup ti, i 2 I is projective for the systems (E; ti) and then
the proof follows by the preceding theorem.

Corollary 3. For every locally convex space (E; t), the asssociated space

(E; �(E;E0)) is an HM-space.

Proof. The weak topology is projective for the systems (Ki; ti)i2E0 , where K
is the �eld of the real or complex numbers and ti is the usual euclidean topology
for every i 2 E0 (E0 is the vector space of continuous linear functionals on a locally
convex space (E; t)). Hence, by the preceding theorem the space (E; �(E;E0)) is
an HM-space.

Corollary 4 [5, Chapter IV, (3.3)]. The space (E; �m) is an HM-space, if

�m, is the minimal locally convex topology on E.

Proof. According to [5] �m = �((E0)#; E0) and by Corollary 3 (E; �m) is an
HM-space.

Remark 1. By [3, Theorem 2] and [5, Chapter II. 6, Example 1] it follows
that the class of HM-spaces is not invariant under direct sums and inductive limit.

Remark 2. According to Corollary 3, it is easy to see that the barrelled (quasi-
barrelled, bornological, ultra-bornological) space associated to an HM-space is not
an HM-space, in general. (About associated spaces see [6]).
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